
RSA Encryption Using Polynomial Rings

Michelle Freed

April 13, 2018

Abstract

This paper examines some of the complexities of the public key encryption system RSA.
RSA provides the necessary steps to encrypt messages using modular arithmetic. It doesn’t
require separate parties to exchange keys because the encrypting key is published for anyone
to use. This creates a secure system whose strength lies in the difficulty to factor the product
of two large (500-600 digits) prime numbers. RSA was originally written to be used over the
ring of integers. This paper gives the necessary mathematical background needed to extend
RSA to be used over the ring of polynomials using the quotient ring F2[x]/n(x).

1

Contents
1 Introduction 3

2 Properties of the Ring of Integers 3
2.1 Division Algorithm for Z . 3
2.2 Euclidean Algorithm . 3
2.3 Bezout’s Identity and The Extended Euclidean Algorithm 4
2.4 Congruences . 5
2.5 Euler Phi Function . 6

3 RSA over Z 6
3.1 Creating the Keys . 7
3.2 Encryption . 7
3.3 Decryption . 7
3.4 Example . 8
3.5 Strength of RSA . 8

4 Properties of the Ring of Polynomials over a Field F 9
4.1 Division Algorithm for F[x] . 9
4.2 Euclidean Algorithm . 9
4.3 Bezout’s Identity and The Extended Euclidean Algorithm 10
4.4 Congruences . 11
4.5 Euler Phi Function for Polynomials . 12

5 RSA over Fk[x] 13
5.1 Creating the Keys . 13
5.2 Encryption . 13
5.3 Decryption . 13
5.4 Example . 14
5.5 Strength of RSA . 15

6 Future Work 15

7 Conclusion 16

2

1 Introduction
The RSA public key encryption algorithm (named after its inventors Rivest, Shamir, and Adleman)
was created because of the growing need for privacy and authentication when using digital com-
munication channels as the use of technology throughout the world increases steadily [4]. Public
key encryption like RSA is important because a courier isn’t required to exchange needed encrypt-
ing and decryption keys for long distance transmission. This courier isn’t needed with public key
because the encryption key is made public for anyone to use. The publisher can be confident that
any messages sent to him or her using this encryption key will remain private because he or she is
the only one with the corresponding decryption key.

The remainder of this paper is organized as follows: Section 2 provides background informa-
tion including different mathematical definitions and theorems which are needed to understand
the implementation of RSA over the ring of integers Z; Section 3 details how the RSA encryp-
tion process is implemented and used with integers; Section 4 provides background information
including different mathematical definitions and theorems which are needed to understand the
implementation of RSA over the ring of polynomials using the ring F2[x]/n(x); Section 5 details
how the RSA encryption process is implemented and used with polynomials; Section 6 presents
areas where future work can expand the study; and Section 7 provides concluding remarks.

2 Properties of the Ring of Integers
In order to understand the main ideas and implementation of the RSA algorithm, we must first
understand some elements of the algebraic structure of the ring of integers Z. This section examines
the relevant definitions and theorems.

2.1 Division Algorithm for Z
Definition 1. Let a and b 6= 0 be two integers. We say that b divides a (written b | a) if and only
if there exists an integer c such that a = b · c.

Definition 2. Let a and b 6= 0 be two integers. The greatest common divisor of a and b,
denoted gcd(a, b), is the greatest positive integer that divides both a and b.

Theorem 3 (Division Algorithm). Let a and b > 0 be two integers. There exists unique integers
q and r such that a = b · q + r with 0 ≤ r < b.

Proof. See Theorem 6.3 in [1].

Lemma 4. Let a and b 6= 0 be two integers. Assume that a = bq + r as in the division algorithm.
Then gcd(a, b) = gcd(b, r).

Proof. See Lemma 1.5 in [2]

2.2 Euclidean Algorithm
The Euclidean Algorithm is used to find the gcd = d of integers a and b when a > b. We use
Theorem 3 to divide b into a as follows,

a = q1b + r1 with 0 ≤ r1 < b.

3

If r1 = 0 then b|a and d = b. If not, then we divide r1 into b and write,

b = q2r1 + r2 with 0 ≤ r2 < r1.

Since gcd(a, b) = gcd(b, r1) by Lemma 4, if r2 = 0 then d = r1. If not, then we continue in this
way until the remainder equals 0.

a = q1b + r1

b = q2r1 + r2

r1 = q3r2 + r3
...

rk−2 = qkrk−1 + rk

Finally, when rk = 0, d = gcd(a, b) = rk−1.

Example 5. Let us find the greatest common divisor of 36 and 15. We use the Euclidean Algorithm
as follows:

36 = 2 · 15 + 6
15 = 2 · 6 + 3
6 = 2 · 3 + 0
3 = gcd(36, 15)

2.3 Bezout’s Identity and The Extended Euclidean Algorithm
Theorem 6 (Bezout’s Identity). Let a and b be two nonzero integers then there exists integers u
and v such that gcd(a, b) = ua + vb.

Proof. See Theorem 1.7 in [2].

In order to find the Bezout numbers u and v, we must perform the Extended Euclidean Algo-
rithm which is essentially the Euclidean Algorithm in reverse order. Start with the gcd(a, b) = d,
which was the last non-zero remainder rk−1 found by preforming the Euclidean Algorithm. Solve
for rk−1 in the second to last equation to get

rk−1 = rk−3 − qk−1 · rk−2

which expresses d as a multiple of rk−3 and rk−2. Next, use the previous equation to solve for rk−2,

rk−2 = rk−4 − qk−2 · rk−3.

Eliminate rk−2 by substituting the second equation into the first to express d as a multiple of rk−3
and rk−4. Repeat this until all of the remainders rk−3, rk−4, ... are eliminated. This results in an
equation that expresses d as a linear combination of a and b with integer coefficients u and v,
d = ua + vb.

4

Example 7. Find the Bezout numbers for 15 and 36. Returning to our example from above where
the gcd(15, 36) = 3, we have

3 = 1 · 15− 2 · 6
= 1 · 36− 2 · 15
= 1 · 15− 2(1 · 36− 2 · 15)
= 5 · 15− 2 · 36.

So we see that the coefficients in the Bezout identity for 15 and 36 are u = 5 and v = −2 since

gcd(15, 36) = 3 = 5 · 15− 2 · 36.

2.4 Congruences
Definition 8. Let a and n be an integers where n is called the modulus. To find the class of a
modulo n, denoted as a mod (n), divide n into a and take the remainder as your answer.

Example 9. Find 22 mod (10). In this case, a = 22 and n = 10. Using the division algorithm, we
can write 22 divided by 10 as 22 = 2·10+2. Since 2 is the remainder, the answer is 22 mod (10) = 2

Definition 10. Let a, b and n > 0 be three integers. We define the relation a is congruent to b
modulo n, written as a ≡ b mod (n) if and only if n|(a− b).

The relation a is congruent to b is an equivalence relation on the ring of integers. The set of
equivalence classes will be denoted as Zn and by abuse of notation the class of a (denoted [a])
will still be denoted by a. We define addition and multiplication of classes as: [a] + [b] = [a + b]
and multiplication [a] · [b] = [a · b]. These two operations are well defined and that Zn endowed
with these two binary operation is a commutative ring with unity. The set of elements of Zn with
multiplicative inverses is denoted as Z∗n.

Lemma 11. The integer x ∈ Zn is in Z∗n if and only if the gcd(x, n) = 1.

Proof. If the gcd(x, n) = 1 then 1 = ux + vn. If we look at this equation modulo n we get 1 =
ux+v ·0 = ux. This implies that u is the multiplicative inverse of x. Conversly, if gcd(x, n) = d 6= 1
then x = dy for some y and n = dm for some m with 0 < m < n. It follows that x ·m = (dy)m =
y(dm) = yn = 0 mod n. If x has an inverse u, then u · 0 = u · (xm) = (ux)m = 1 ·m mod n.

Theorem 12 (Chinese Remainder Theorem). Let n1, n2, . . . , nk be positive integers with gcd(ni, nj) =
1 whenever i 6= j and let a1, a2, . . . , ak be any integers. Then there exists a simultaneous solution
x to all of the congruences,

x ≡ a1 mod (n1),
x ≡ a2 mod (n2),

...
x ≡ ar mod (nk)

and they form a single congruence class mod(n) where n = n1n2 . . . nk.

5

Proof. See Theorem 3.10 in [2]. We remark that if N =
k∏

i=1
ni then the Chinese Remainder Theorem

is equivalent to the fact that the ring ZN is isomorphic to the ring Zn1 × Zn2 × · · · × Znk

Example 13. Find a solution to the congruences,

x ≡ 1 mod (2),
x ≡ 2 mod (3),
x ≡ 1 mod (5).

We see that gcd(2, 3) = 1, gcd(2, 5) = 1, and gcd(3, 5) = 1. Also, n = 2 · 3 · 5 = 30, c1 =
30/2 = 15, c2 = 30/3 = 10, and c3 = 30/5 = 6. Now we need to find d1, d2, and d3 satisfying
c1d1 ≡ 1 mod (n1), c2d2 ≡ 1 mod (n2), and c3d3 ≡ 1 mod (n3). So 15d1 ≡ 1 mod (2) implies that
d1 ≡ 1 mod (2) and we may take d1 = 1. Similarly, d2 = 1 and d3 = 1. So a solution is

x = a1c1d1 + a2c2d2 + . . . + akckdk = 1(15)(1) + (2)(10)(1) + 1(6)(1) = 41 mod (30) = 11.

2.5 Euler Phi Function
Definition 14 (Euler Phi Function). Let n be a positive integer. We define ϕ(n) as the number
of elements in the set Z∗n. Equivalently, ϕ(n) is the number of units in Zn, or ϕ(n) is the number
of non-negative integers less than n which are prime to n.

Theorem 15. Let m and n be two integer such that m ≥ 2 and n ≥ 2. Then, Zmn is isomorphic
to Zm × Zn if and only if gcd(m, n) = 1.

Proof. See Theorem 11.5 in [1].

Lemma 16. We have the following properties of the function ϕ(n).

1. If p is a prime number and r is a positive integer then ϕ(pr) = pr − pr−1.

Proof. See Lemma 5.4 in [2]

2. If m > 1 and n > 1 are integers then ϕ(m · n) = ϕ(m) · ϕ(n).

Proof. See Corollary 5.7 in [2]

3 RSA over Z
RSA is a public key encryption system meaning that there is a public pair of positive integers
which is the encryption key (E , n) and a private pair which is the decryption key (D, n) as shown
below. The encryption key is published for public use, and the decryption key is kept private. This
means that there isn’t a need for a courier to exchange the keys because anyone can access the key
to encrypt. Because of this, public key encryption systems are essential to digital mail privacy.
The numbers E and D are carefully chosen by the publisher as explained below. The number n
is created by taking the product of two random large primes p and q, so n = p · q. The number
n is made public, but the primes p and q are kept private. The security of RSA depends on the
difficulty to factor n.

6

3.1 Creating the Keys
As mentioned above, RSA uses a public encryption key (E , n) and a private decryption key (D, n).
To create these keys, we must first randomly choose two large prime numbers p and q (p in the
range of 500 digits and q in the range of 600 digits). These are then multiplied together to create
the number n = p · q. We must calculate ϕ(n). By the Chinese Remainder Theorem (Theorem 12)
we know that,

ϕ(n) = ϕ(pq) = ϕ(p)ϕ(q) = (p− 1)(q − 1).
To create the encrypting key, we must find a large random number E that has gcd(E , ϕ(n)) = 1
and is between max(p, q) and ϕ(n). Once we have E , we must find the multiplicative inverse D
which is the key to decrypt the message and satisfies the equation,

E · D ≡ 1 mod (ϕ(n))

To find the inverse D, we use the Euclidean Algorithm. Let a = ϕ(n) and b = E so that,

a = q1(b) + r1

b = q2(r1) + r2

r1 = q3(r2) + r3
...

rk−2 = qk(rk−1) + rk

Perform these steps until the remainder becomes rk = 1 (we know this will be the case because
gcd(E , ϕ(n)) = 1). Now we can preform the Extended Euclidean Algorithm to find numbers that
satisfy Bezout’s identity gcd(E , ϕ(n)) = ua + vb. By substitution, 1 = uϕ(n) + vE which can be
rewritten as v · E ≡ 1 mod (ϕ(n)). So we see that our inverse number D = v.

3.2 Encryption
To encrypt a message, user A (the sender) first takes their plaintext message M and converts it
into decimal format (the number representation of the message) using a prearranged algorithm
with user B (the receiver) which becomes m. To encrypt the message m, user A uses the published
encryption or enciphering key (E , n) to raise m to the E th power modulo n as seen in the following
modulus function,

E(m) = mE mod (n) = c.

This gives us the ciphertext (which is encrypted message) c. The final step is to convert the
ciphertext from decimal c into binary and send to user B.

3.3 Decryption
The decryption process is very similar to the encryption process except user B (the receiver) uses
the decryption or deciphering key (D, n) which has been kept private. The received message c is
raised to the Dth power modulo n instead of the E th power as seen bellow,

D(c) = cD mod (n) = m

First, user B converts the received binary code into decimal format and preforms D(c) to find the
original message m. Next, user B converts D(c) = m back into the message M .

7

3.4 Example
Assume Jill wants to send a message M = Y ES through the RSA encryption process to Paul.
They have pre-arranged that they will use an alphabet of 26 letters, which are each represented by
a number 0-25. Paul has made the enciphering key (n = 46927, E = 39423) public while he keeps
the numbers p = 281 and q = 167 private along with the decryption key D = 26767 (which is the
multiplicative inverse of E mod (ϕ(n))). Jill knows that Y = 24, E = 4 and S = 18. She writes
the message Y ES in decimal format by

24 · 262 + 4 · 26 + 18 = 16346 = m

Jill then encrypts the message m by using the encryption formula as seen below,
E(m) = mE mod (n) = 1634639423 mod (46927) = 21166 = c,

The final step for Jill is to change c = 21166 back to base 26 from the current decimal format by
dividing 26 into c and taking the remainders.

21166 = 814(26) + 2
814 = 31(26) + 8
31 = 1(26) + 5
1 = 0(26) + 1

The remainders 1 = B, 5 = F , 8 = I and 2 = C give the coded message C = BFIC which she
sends to Paul.

Paul receives the message C = BFIC and follows the same steps Jill followed to decrypt it
only with a slight difference. The difference is that Paul will use the decryption key D = 26767
instead of the encryption key E . So, C = BFIC becomes c = 21166 and,

D(c) = cD mod (n) = 2116626767 mod (46927) = 16346 = m,

Finally, Paul converts m to the original base 26 by dividing by 26 and taking the remainders as
the digits. So,

16346 = 628(26) + 18
627 = 24(26) + 4
24 = 0(26) + 24

The remainders are 24, 4, 18 which Paul knows represent the letters Y = 24, E = 4 and S = 18.
So he uncovers the original message M = Y ES.

Note: Keep in mind that this example uses prime numbers that are three digits each. When
RSA is used, the primes are hundreds of digits long.

This example is taken from [3]

3.5 Strength of RSA
The strength of RSA lies in the prime factorization. Recall that the numbers being made public
are n and E . The number n is an extremely large number (large meaning 500-600 digits each) since
n is the product of two large primes, and E is rather large itself since E > n. In order to decrypt
a message, we must find the inverse D of E mod (ϕ(n)). This is only possible by first finding the
value ϕ(n). To find ϕ(n), we must be able to factor n because ϕ(n) = ϕ(p)ϕ(q) = (p− 1)(q − 1).
Once ϕ(n) is found, we can then use the Euclidean Algorithm to find the desired number D. This
prime factorization is extremely difficult because n = p · q is such a large number.

8

4 Properties of the Ring of Polynomials over a Field F
We have now looked at RSA encryption over the ring of integers, and we want look at the imple-
mentation process of RSA over a ring of polynomials. This section examines the different necessary
definitions and theorems for understanding in RSA over polynomials.

4.1 Division Algorithm for F[x]
Definition 17. Let a(x) and b(x) be two polynomials with degree greater than zero. We say
that b(x) divides a(x) (written b(x)|a(x)) if and only if there exists a polynomial c(x) such that
a(x) = b(x) · c(x).
Definition 18. Let a(x) and b(x) be two polynomials with degree greater than zero. The greatest
common divisor of a(x) and b(x), denoted gcd(a(x), b(x)), is the polynomial with the greatest
degree which divides both a(x) and b(x).
Definition 19. Let a(x) = a0 + a1x + a2x

2 + ... + adxd be a polynomial. The degree d of a(x) is
the highest power of x with nonzero coefficients, denoted as deg(a(x)) = d > 0.
Theorem 20. Let a(x) and b(x) be two polynomials with degree greater than zero. There exists
unique polynomials q(x) and r(x) in F[x] such that a(x) = b(x) · q(x) + r(x) with r(x) = 0 or the
degree of r(x) is less than the degree of b(x).
Proof. Theorem 23.1 in [1]
Lemma 21. Let a(x) and b(x) be two polynomials with degree greater than zero. Assume that
a(x) = b(x)q(x) + r(x) as in the division algorithm. Then gcd(a(x), b(x)) = gcd(b(x), r(x)).
Proof. Imitate proof for integers as in Lemma 1.5 in [2].

4.2 Euclidean Algorithm
To find the greatest common divisor d(x) of polynomials a(x) and b(x) when deg(a(x)) > deg(b(x)),
use Theorem 20 to divide b(x) into a(x) as follows,

a(x) = q1(x)b(x) + r1(x) with deg(r1(x)) = 0 or deg(r1(x)) < deg(b(x)).

If r1(x) = 0 then b(x)|a(x) and d(x) = b(x). If not, then we divide r1(x) into b(x) and write,

b(x) = q2(x)r1(x) + r2(x) with deg(r1(x)) = 0 or deg(r2(x)) < deg(r1(x)).

Since gcd(a(x), b(x)) = gcd(b(x), r1(x)) by Theorem 21, if r2(x) = 0 then d(x) = r1(x). If not,
then we continue in this way until the remainder equals 0.

a(x) = q1(x)b(x) + r1(x)
b(x) = q2(x)r1(x) + r2(x)

r1(x) = q3(x)r2(x) + r3(x)
...

rk−2(x) = qk(x)rk−1(x) + rk(x)

Finally, when rk(x) = 0, d(x) = gcd(a(x), b(x)) = rk−1(x).
We can use the Euclidean Algorithm and Theorem 20 to find the greatest common divisor of

any two polynomials.

9

Example 22. Let us find the greatest common divisor of the polynomials a(x) = x4−4x3 + 6x2−
4x + 1 and b(x) = x3 − x2 + x− 1. Similarly to the Euclidean Algorithm for integers, we use the
Euclidean Algorithm for polynomials as follows:

a(x) = (x− 3)b(x) + (2x2 − 2)

b(x) = (2x2 − 2)(1
2x− 1

2) + (2x− 2)

(2x2 − 2) = (2x− 2)(x + 1) + 0
(2x− 2) = gcd(a(x), b(x))

It is customary to represent this polynomial using a monic polynomial. A monic polynomial is
defined to be the polynomial where the coefficient of the term with the highest degree is equal to
1. So the monic polynomial for (2x− 2) = (x− 1). Therefore, the gcd(a(x), b(x)) = (x− 1).

4.3 Bezout’s Identity and The Extended Euclidean Algorithm
Theorem 23 (Bezout’s Identity). Let a(x) and b(x) be two polynomials with degree greater than
zero. There exists polynomials u(x) and v(x) such that gcd(a(x), b(x)) = u(x)a(x) + v(x)b(x).

Proof. Imitate proof for integers as in Theorem 1.7 in [2].

In order to find the Bezout polynomials u(x) and v(x), we use the Extended Euclidean Algo-
rithm. Start with the gcd(a(x), b(x))) = rk−1(x), which was the last non-zero remainder found by
preforming the Euclidean Algorithm. Solve for rk−1(x) in the second to last equation to get

rk−1(x) = rk−3(x)− qk−1(x)rk−2(x)

which expresses the gcd as a multiple of rk−3(x) and rk−2(x). Next, use the previous equation to
solve for rk−2(x),

rk−2(x) = rk−4(x)− qk−2(x)rk−3(x)

Eliminate rk−2(x) by substituting the second equation into the first to express the gcd as a multiple
of rk−3(x) and rk−4(x). Repeat this until all of the remainders rk−3(x), rk−4(x), ... are eliminated.
This results in an equation that expresses the gcd as a linear combination with polynomial coeffi-
cients of a(x) and b(x), or more specifically, gcd = u(x)a(x) + v(x)b(x).

Example 24. Find the Bezout polynomials for a(x) = x4 − 4x3 + 6x2 − 4x + 1 and b(x) =
x3 − x2 + x − 1. Returning to our example from above where the gcd(a(x), b(x)) = (2x − 2), we
have

(2x− 2) = b(x)− (1
2x− 1

2)(2x2 − 2)

= b(x)− (1
2x− 1

2)(a(x)− b(x)(x− 3))

= (1
2x2 − 2x + 5

2)b(x)− (1
2x− 1

2)a(x)

So we see that the coefficient polynomials in the Bezout identity for a(x) and b(x) are u(x) =
−(1

2x− 1
2) and v(x) = (1

2x2 − 2x + 5
2).

10

4.4 Congruences
Definition 25. Let a(x) and n(x) be any polynomials with degree greater than zero where n(x)
is called the modulus. To find the class of a(x) modulo n(x), denoted as a(x) mod (n(x)), divide
n(x) into a(x) and take the remainder as the class representative.

Example 26. Find (x3 +2x2 +3) mod (x2−1). In this case, a(x) = x3 +2x2 +3 and n(x) = x2−1.
Using the division algorithm, we can write a(x) divided by n(x) as a(x) = (x + 2)n(x) + (3x + 1).
Since (3x + 1) is the remainder, the class representative is (3x + 1)

Definition 27. Let a(x), b(x) and n(x) be three polynomials with degree greater than zero. We
define the relation a(x) is congruent to b(x) modulo n(x), written as a(x) ≡ b(x) mod (n(x)) if
and only if n(x) divides a(x)− b(x) and we will write n(x)|(a(x)− b(x)).

The relation a(x) is congruent to b(x) is an equivalence relation on the ring of polynomials. The
set of equivalence classes will be denoted as F[x]/n(x) and the class of a(x) will still be denoted
by [a(x)]. We define addition and multiplication of classes as: [a(x)] + [b(x)] = [a(x) + b(x)] and
multiplication [a(x)] · [b(x)] = [a(x) ·b(x)]. It is not hard to check that these two operations are well
defined and that F[x]/n(x) endowed with these two binary operation is a commutative ring with
unity. The set of elements of F[x]/n(x) that have multiplicative inverse is denoted as [F[x]/n(x)]?.
By abuse of notation we will not use the brackets to represent classes in further explanations.

Lemma 28. The class of the polynomial a(x) in F[x]/n(x) is in [F[x]/n(x)]∗ if and only if
gcd(a(x), n(x)) = 1.

Proof. This follows from Bezout’s Identity.

Theorem 29 (Chinese Remainder Theorem). Let n1(x), n2(x), . . . , nk(x) be polynomials such that
gcd(ni(x), nj(x)) = 1 whenever i 6= j and let a1(x), a2(x), . . . , ak(x) be any polynomials. Then
there exists a simultaneous solution m(x) to all of the congruences,

m(x) ≡ a1(x) mod (n1(x)),
m(x) ≡ a2(x) mod (n2(x)),

...
m(x) ≡ ar(x) mod (nk(x))

and they form a single congruence class mod(n(x)) where n(x) = n1(x)n2(x) . . . nk(x). As in the
case of the ring of integers the Chinese Remainder Theorem is equivalent to the fact that the ring
F[x]/n(x) is isomorphic to the ring

F[x]/n1(x)× F[x]/n2(x)× · · · × F[x]/nk(x)

Proof. Imitate the proof given for the ring of integers as in Theorem 3.10 in [2].

Definition 30. Let f(x) be a non-constant polynomial in F[x] with degree greater than zero. We
sat that f(x) is irreducible over F or is an irreducible polynomial in F[x] if f(x) cannot be
expressed as a product of two polynomials g(x) and h(x) each of degree greater than one.

11

4.5 Euler Phi Function for Polynomials
Definition 31. Let p be a prime number, Fk be a finite field with k = pr elements. Let Fk[x] be
the ring of polynomials with coefficients in Fk, and let f(x) = f0 + f1x + ... + fdxd be a polynomial
in Fk[x] where deg(f(x)) = d. Consider the quotient ring Rf = Fk[x]/f(x). We define ϕ(f(x)) to
be the number of elements in R∗f where

R∗f = {a(x) ∈ R | a(x) has a multiplicative inverse in R}.

It follows from Theorem 23 that a(x) ∈ R∗f if and only if gcd(a(x), f(x)) = 1.

Theorem 32. Let F be a field (not necessarily finite) and F[x] the ring of polynomials over F. Let
m(x) and n(x) be two polynomials such that deg(m(x)) ≥ 2 and deg(n(x)) ≥ 2. Then, Rm(x)n(x)
is isomorphic to Rm(x) ×Rn(x) if and only if gcd(m(x), n(x)) = 1.

Proof. Imitate proof for integers as in Theorem 11.5 in [1].

Lemma 33. Let f(x) be any irreducible polynomial of degree d in Fk[x]. Then,

ϕ(f(x)n) = kdn − kd(n−1)

Proof. By abuse of notation, fn will be used to represent f(x)n. To find the cardinality (or number
of elements) of R∗fn , we are going to find the cardinality of Rfn \ R∗fn and subtract that from the
cardinality of the set Rfn . First observed that b(x) ∈ Rfn \ R∗fn if and only gcd(b(x), f(x)n) 6= 1.
Since f(x) is irreducible f(x) must divide b(x). Therefore, b(x) must be of the form b(x) = c(x)f(x)
for some c(x) = c0 + c1d + ... + csx

s ∈ F[x] where s must satisfy

s + d < nd or
s < nd− d = d(n− 1).

So there are d(n − 1) possible coefficients for the polynomial c(x) because its coefficients need to
stop at cd(n−1)−1. Therefore, ∣∣∣Rfn \R∗fn

∣∣∣ = kd(n−1)

We know that |Rfn| = (kd)n = kdn because any element in Rfn has at the most degree dn − 1.
Since Rfn =

[
Rfn \R∗fn

]
∪ R∗fn and

[
(Rfn \R∗fn)

]
∩ R∗fn = ∅, that is Rfn and Rfn − R∗fn do not

intersect, we have ∣∣∣Rfn

∣∣∣ =
∣∣∣(Rfn \R∗fn)

∣∣∣+ ∣∣∣R∗fn

∣∣∣
ϕ(f(x)n) =

∣∣∣R∗fn

∣∣∣ =
∣∣∣Rfn

∣∣∣− ∣∣∣(Rfn \R∗fn)
∣∣∣ = kdn − kd(n−1)

Theorem 34. If deg(m(x)) > 1 and deg(n(x)) > 1 are polynomials then

ϕ(m(x) · n(x)) = ϕ(m(x)) · ϕ(n(x)).

Proof. The proof follows from Lemma 33 and the Chines Remainder Theorem.

12

5 RSA over Fk[x]
Now that we have explored how RSA works with messages represented as integers and the mathe-
matics about integers and polynomials, let us examine how RSA works over the ring of polynomials.
From now on we will be using k = 2 when talking about the field F2[x].

5.1 Creating the Keys
In RSA with integers we need to select two random prime numbers. However, when using RSA with
polynomials, instead of prime numbers we find two irreducible polynomials p(x) with deg(p(x)) =
dp and q(x) with deg(q(x)) = dq in the ring F2[x] and we set n(x) = p(x)q(x). We select the
encryption key E , to be a random integer satisfying gcd(E , ϕ(n(x))) = 1 and that

max(p(x), q(x)) < E < ϕ(n(x)).
In order to find the value for ϕ(n(x)), which we know that to be, ϕ(n(x)) = ϕ(p(x))ϕ(q(x)) we
need to define the value for ϕ(p(x)).

By theorem 33 we see that for the irreducible polynomials p(x) and q(x),
ϕ(p(x)) = 2dp·(1) − 2dp·(1−1) = 2dp − 20 = 2dp − 1
ϕ(q(x)) = 2dq ·(1) − 2dq ·(1−1) = 2dq − 20 = 2dq − 1

ϕ(n(x)) = ϕ(p(x) · q(x)) = ϕ(p(x)) · ϕ(q(x)) = (2dp − 1) · (2dq − 1).
Now that we have calculated the value of ϕ(n(x)), we must find the encryption key E and the
decryption key D. These are found using the same method from when we were using the integers.
Choose a random number E and find D (which is the multiplicative inverse) by using the Euclidean
Algorithm which satisfies the equation

E · D = 1 mod (ϕ(n(x)))

5.2 Encryption
The steps are very similar for encrypting as explained above in regards to integers, however there
is one step added. User A (the sender) takes their plaintext message M and converts it all the
way into a binary message m. They then create a polynomial m(x) from the binary number. Each
digit of message m is the coefficient to the corresponding term. For example, let m = 101011. The
corresponding polynomial would be m(x) = 1·x5+0·x4+1·x3+0·x2+1·x1+1·x0 = x5+x3+x+1.
To encrypt this polynomial we just raise m(x) to the E th power like before as seen below,

E(m(x)) = m(x)E mod (n(x)) = c(x).
The coefficients are extracted from c(x) to create the binary number or ciphertext c which is finally
sent to user B (the receiver).

5.3 Decryption
The binary ciphertext c is received by user B who creates the corresponding polynomial c(x), and
raises it to the Dth power as seen below,

D(c(x)) = c(x)D mod (n(x)) = m(x),
User B takes m(x) and extracts the coefficients to find the binary digits m and converts m to the
original message M .

13

5.4 Example
Let us look at an example of RSA using the polynomial ring F2[x]/n(x). Because these numbers
and polynomials quickly become to large to calculate by hand, the free online software CoCalc has
been utilized to write code which performs the encryption and decryption [5]. We have included
the lines of code in this example with explanations of the action each line preforms.

R = PolynomialRing(GF(2),’x’) This line of code creates the polynomial ring.
x = R.gen() This line of code shows that x is the variable for the polynomials.
p=x101 + x7 + x6 + x + 1 Here we are defining our first irreducible polynomial.
q=x503 + x3 + 1 Here we are defining our second irreducible polynomial.
n=p*q This line of code creates our polynomial n(x) which is,

n(x) = x604 + x510 + x509 + x504 + x503 + x104 + x101 + x10 + x9 + x7 + x6 + x4 + x3 + x + 1.

S = R.quotient(n, ’a’) This line of code creates the quotient ring.
a = S.gen() Now a will be the variable for the quotient ring which are polynomials in a.
e=71 This is the encryption key E = 71.
phiOfN=(2503 − 1) ∗ (2101 − 1) This calculates the ϕ(n(x)) which is the following number,
663922491020958873361985258190323912913359705809188848823558964818327118462381858240
794464522088916382399287893417464661797151839493813114531695167777471456394113692511
94530751840257.

Now we have implemented the needed code to preform the encryption. Jan wants to send the
message M = HELP to Norm. Both users have pre-arranged that any message sent must be
converted to binary where each binary digit represent the coefficients of the message polynomial
m(x). So Jan converts the message M to binary,

M = HELP = (126037)26 = (11110110001010101)2.

From this binary number, she then creates the corresponding message polynomial,

m(x) = a16 + a15 + a14 + a13 + a11 + a10 + a6 + a4 + a2 + 1.

In the code we assign this polynomial to the variable M and raise the message to the encryption
key E = 71 which produces the encrypted polynomial eM as below.
eM=Me= a601 +a600 +a598 +a597 +a596 +a594 +a593 +a591 +a590 +a587 +a586 +a584 +a583 +a582 +a581 +
a580 +a578 +a577 +a576 +a573 +a571 +a570 +a568 +a567 +a565 +a560 +a559 +a557 +a555 +a554 +a553 +
a551 +a550 +a547 +a546 +a545 +a544 +a543 +a541 +a540 +a536 +a535 +a534 +a533 +a530 +a526 +a523 +
a519 +a517 +a516 +a513 +a511 +a509 +a507 +a506 +a505 +a504 +a502 +a501 +a499 +a498 +a497 +a496 +
a494+a492+a491+a488+a487+a486+a485+a484+a479+a478+a473+a471+a469+a467+a464+a462+a461+
a457+a455+a454+a452+a451+a450+a446+a444+a442+a440+a439+a434+a433+a432+a431+a430+a429+
a427+a424+a417+a414+a413+a412+a411+a407+a406+a403+a401+a399+a398+a396+a395+a392+a391+
a390+a389+a386+a382+a373+a372+a369+a368+a365+a364+a363+a362+a361+a358+a357+a355+a353+
a351+a350+a348+a345+a343+a341+a339+a338+a337+a335+a334+a331+a325+a324+a323+a322+a320+
a316+a314+a312+a311+a309+a308+a306+a304+a302+a294+a291+a289+a287+a284+a282+a275+a271+
a265+a264+a263+a262+a261+a258+a254+a252+a251+a249+a246+a245+a243+a242+a241+a240+a238+
a236+a235+a232+a231+a230+a229+a228+a223+a222+a217+a215+a213+a211+a208+a206+a205+a201+
a199+a198+a196+a195+a194+a190+a187+a186+a185+a184+a183+a182+a180+a179+a177+a176+a175+

14

a171+a170+a169+a167+a164+a163+a158+a157+a155+a151+a150+a147+a146+a144+a142+a141+a140+
a137+a135+a132+a130+a126+a125+a124+a123+a122+a121+a119+a117+a116+a114+a113+a112+a105+
a101+a100+a97+a96+a95+a94+a91+a89+a87+a86+a84+a81+a80+a79+a78+a76+a75+a72+a71+
a69 +a67 +a66 +a65 +a62 +a61 +a58 +a57 +a56 +a53 +a51 +a47 +a46 +a43 +a40 +a39 +a36 +a35 +a31 +
a30 +a28 +a27 +a26 +a23 +a22 +a21 +a20 +a19 +a17 +a15 +a13 +a12 +a8 +a7 +a5 +a4 +a3 +a2 +a+1

Jan extracts the coefficients from this encrypted polynomial eM creating the binary message,
1101110110110011011111011100101101101000011010111011001111101100011110010001001000101
1001010101111011011110101100111110000110000101010100101100010110111000101010110000111
1110100100000010011110001100101011011001111001000100000000110011001111100110101011010
0101010111011001000001111010001010110110101010000000100101010010100000010001000001111
1001000101101001101111010110011111000011000010101010010110001011011100010011111101101
1100011101001100001101000110011010111001010010100011111101011011100000010001100111100
1010110100111101100110101110011001110010100011001001100110001101110011111010101100011
0111111 which she sends to Norm. Norm receives this binary number and uses the decryption key
to retrieve the original message. To find the decryption key D (which is the multiplicative inverse
of E = 71) we find the Bezout number v as seen in the below line of code.
d,u,v=xgcd(fiOfN,e)
In this case, D = 2992326720094462527828665952407093692003874730407611713007589700589643
3508163689385500595584094148343995460862801913900250012477272960591077484852632224065
640298081916031337803646313. Norm raises the received message eM to the Dth power which
results in the original message polynomial.
dM=eMd

m(x) = a16 + a15 + a14 + a13 + a11 + a10 + a6 + a4 + a2 + 1
= 11110110001010101
= 126037
= HELP

5.5 Strength of RSA
As we saw above, the strength of RSA lies in the difficulty for an outside source to factor the
number n. In the case of this polynomial ring, it seems that to factor the polynomial n(x) is also
difficult since it is the product of two unique irreducible polynomials both with large degree (at
least 500 or 600 digits).

6 Future Work
It is important to note that RSA could be implemented using any other finite field. For example,
we could use F5[x] instead of F2[x]. However, one must then find irreducible polynomials of high
degree in this finite field, a difficult problem we have not discussed here. Another area for future
study would be the difficulty to factor the polynomial n(x) compared with the difficulty to factor
the integer n. This would tell us how secure polynomial RSA is compared to the classical RSA
over the integers.

15

7 Conclusion
In this paper we explored the implementation of RSA over the ring of integers Z and extended
the RSA algorithm to the ring of polynomials over the field F2[x]. In the case of integers we pick
random prime numbers p and q in the range of (500 to 600 digits each) with p < q and create
the modulus n = pq. In the case of polynomials we pick two irreducible polynomials p(x) and
q(x) with degree in the range (500 to 600 digits each) with deg(p(x)) < deg(q(x)) and create the
modulus polynomial n(x) = p(x)q(x). In both cases we select a random prime number E (with
requirements listed in section 3.2 and 5.2) to be the encryption key. Next, we find the decryption
key D which is the multiplicative inverse of E modulo ϕ(n) or ϕ(n(x)) (see sections 3.1 and 5.1
for explanation of finding D). In section 4.5, we defined and found a formula to calculate ϕ(n(x))
of a given polynomial n(x) over a finite field Fk[x], Lemma 33. The implementation of polynomial
RSA hinges on the formula for ϕ(n(x)).

16

References
[1] Fraleigh, John B., A First Course in Abstract Algebra, Pearson Education. Inc, 2003.

[2] Jones, Gareth A., and Jones, J. Mary, Elementary Number Theory, Springer Undergraduate
Mathematics Series, 1998.

[3] Koblitz, Neal, A Course in Number Theory and Cryptography, Department of Mathematics
University of Washington, 1994.

[4] Rivest R. L., Shamir A., Adleman L., A Method for obtaining Digital Signatures and Public-
Key Cryptosystems, 1977.

[5] Stein, William A. et al. Sage Mathematics Software (Version 8.1). The Sage Development
Team, 2011. http://www. sagemath.org

17

