

NORTHWEST NAZARENE UNIVERSITY

Counseling Department Scheduling and Accreditation Tool

THESIS
Submitted to the Department of Mathematics and Computer Science

in partial fulfillment of the requirements
for the degree of

BACHELOR OF SCIENCE

Zachary Garner
2019

THESIS
Submitted to the Department of Mathematics and Computer Science

in partial fulfillment of the requirements
for the degree of

BACHELOR OF SCIENCE

By
Zachary Garner

2019

Counseling Department Scheduling and Accreditation Tool

Author: __
 Zachary Garner

Approved: __

Dr. Barry Myers, Department of Mathematics and Computer Science,
Faculty Advisor

Approved: __
 Dr. Curtis Garner, Department of Counseling Education, Second Reader

Approved: __
 Barry L. Myers, Ph.D., Chair, Department of Mathematics & Computer Science

iii

ABSTRACT

Creating a Simple and Easy to Use Scheduling and Accreditation Application Based on Existing
Scheduling Documents Used by NNU’s Counseling Department.

GARNER, ZACHARY (Department of Mathematics and Computer Science), MYERS, DR.
BARRY (Department of Mathematics and Computer Science).

For department chairs and their support staff, scheduling courses can be some of the most tedious
and time-consuming work they are involved in. Currently, courses are hand scheduled and
checked to ensure they do not create conflicts for students in any semester of the program. A
need exists for an automated scheduling application that can check for schedule conflicts and
craft a complete schedule accordingly. Calculating information for the Council for Accreditation
of Counseling & Related Educational Programs or CACREP Accreditation is a similar situation
for NNU’s Counseling Department, as many data points must be considered in the calculation,
which leads to a lengthy process that ultimately creates little value. The purpose of this project
was to create a web-based application that could both create a completed schedule and calculate
the CACREP ratio using the same spreadsheets and documents that the department uses in their
current approach. It was also important that the project was easy to use and understand so
simplicity of design was a key component. The project consists of a website designed using
HTML, CSS, JavaScript, and PHP which communicates with a python application to parse data
from the uploaded files and formulate output. It is hosted at nnu-counseling-calculator.tk.

iv

Acknowledgments

 I would like to thank my friends and family, including Curtis Garner, Mallory Garner,
Christina Grubaugh, and Ryan Pacheco for helping me through the entirety of college, as well as
their valuable input on this project. In addition, I would like to thank Dr. Curtis Garner for
envisioning this project and encouraging me to make it a reality. Finally, I would like to thank
Dr. Barry Myers, and Dr. Dale Hamilton for their guidance and advice throughout my time in the
computer science program.

v

Table of Contents

Title Page ..i

Signiture Page ... ii

Abstract.. iii

Acknowledgments ..iv

Table of Figures ..vi

Overview ... 1

Background .. 1

Project Planning ... 2

User Data ... 5

Class Scheduler ... 6

CACREP Ratio Calculator .. 8

Hosting the Project .. 10

Future Work ... 10

Conclusion ... 11

Appendix A ... 13

index.html ... 13

calculator.html ... 14

style.css ... 15

submit.php ... 17

calculate.php.. 19

calculator.py .. 22

course.py ... 23

dateTime.py ... 23

professor.py ... 24

scheduler.py .. 25

Appendix B .. 30

loadsheet.xlsx .. 30

Clinical.docx ... 31

MCFC.docx ... 32

School.docx ... 33

startTimes.csv.. 34

vi

Table of Figures

Figure 1 - Current Scheduling Method .. 2

Figure 2 - Data Flow Diagram ... 4

Figure 3 - Class Diagram ... 5

Figure 4 - Class Scheduling Front End .. 7

Figure 5 - CACREP Ratio Calculator Front End ... 9

1

Overview

 The primary goal of this project was initially to create a program that would completely

take over all class scheduling duties for any university department. It would have then been

marketable as a product to universities to increase productivity. The revised purpose of this

product was to develop a program specifically for NNU’s counseling department that could

efficiently schedule times for courses using existing documents. The secondary purpose was to

use the same documents in order to calculate Council for Accreditation of Counseling & Related

Educational Programs or CACREP Accreditation ratios for the department. It was important for

the program to be accessible as a website and easy to use.

Background

 On the surface scheduling courses appears to be trivial; however, there are many factors

to consider when choosing a time for a course. Some of the most important aspects are the

availability of instructors at any given time, and potential conflicts between courses that are

required in the same semester. Complicating the issue further is the fact that there are three

different tracks in the counselor education program: marriage and family counseling, school

counseling, and clinical counseling. Each of these tracks has their own scheduling needs, so they

all must be considered with constructing a cohesive class schedule.

 Before the development of this project, NNU’s counseling department had no set

procedure for scheduling courses. Class schedules have usually been pieced together on a

chalkboard using a combination of Microsoft Excel files called “loadsheets” and Microsoft Word

files called “plans of study”. This outdated method of scheduling has proven to be extremely

time consuming for the department and is consuming resources that could be more productive in

another area.

2

Figure 1 - Current Scheduling Method

In addition to scheduling courses, obtaining CACREP Accreditation is incredibly

important for NNU’s counselor education program. CACREP Accreditation provides recognition

that the content and quality of the program has been evaluated and meets standards set by the

profession. By graduating from an accredited program, students increase their chances of getting

licensed as a counselor and ultimately landing a job. NNU’s counselor education program has to

meet certain criteria to maintain their CACREP Accreditation, one of which is the student to

faculty ratio. This ratio is based on the number of course hours taken by students and taught by

faculty as opposed to a strict headcount of students and professors, which complicates the

calculation. Before the creation of this project, NNU’s counselor education program was

calculating the CACREP student to faculty ratio by hand with a paper form.

Project Planning

 As this was a stand-alone project started from scratch, a significant amount of project

planning had to take place to ensure a satisfactory product was produced. Firstly, alternative

3

software packages were researched in order to ensure that the class scheduling problem was

either unique enough or valuable enough to pursue. While there is a large variety of

professionally developed software that can assist in the scheduling of courses, there are not many

completely automated options and the software is generally quite expensive. Analyzing the

viability of existing software further proved the need for custom software to be produced for

NNU’s Counselor Education department.

 Next, specific requirements for the project had to be identified. This was accomplished

with a series of semi-formal interviews with the stakeholders of the project. These interviews

proved to be challenging as they highlighted the difficulties of having meaningful dialogue

between technical producers and nontechnical consumers. Still, progress was made and

eventually resulted in clear user requirements and a reasonable scope for a one-person team. The

project had to: schedule courses partly or completely automatically, calculate the CACREP

student to faculty ratio automatically, use existing documents, and have a graphical user

interface. Non-required user desires included: ease of use, ability to perform calculations

quickly, and availability on any platform or computer. The scope was limited to scheduling

courses and calculating the CACREP ratio with all other operations considered to be future

work.

 After the requirements had been identified, an appropriate language could be chosen for

the project. Python was the obvious choice for the backend of the application as it is regarded as

easy to write and has many packages for data collection which was an important aspect of the

project. Then, a solution for a frontend and graphical user interface or GUI had to be considered.

Two possible options were to make the application web based and have an html/JavaScript/CSS

frontend or to create a desktop application with a Python frontend. A web-based application was

4

ultimately chosen as it satisfied more user desires. By hosting the project on a server there would

be no need for users to download and install the project or worry about what version they had.

The latest version would always be available on any computer as long as the user had access to

internet.

 Modeling is important both pre and post implementation to help the programmer

understand how to implement the project and to inform the user how the project functions. The

data flow diagram models the journey the data takes through the application and includes the

expected inputs and outputs. It is extremely useful as it helps the programmer to visualize how

the data should be transformed at each point of the application. The data flow diagram for the

class scheduler and the CACREP ratio calculator follows (Online Diagram Software & Visual

Solution).

Figure 2 - Data Flow Diagram

 A class diagram is another useful modeling tool that displays the data and functions of

each class in a project. It also displays the relationships the classes have with one another

whether that relationship is association, inheritance, aggregation, or composition. An up to date

class diagram makes it easy to understand the inner working of a project and is extremely useful

for enabling future work on the project. The class diagram for the class scheduler and the

CACREP ratio calculator follows (Online Diagram Software & Visual Solution).

5

Figure 3 - Class Diagram

 By carefully planning, organizing, and documenting before, during, and after the

development of the project it was ensured that the project satisfied the user’s needs, stayed

within a reasonable scope, and was ready for more work in the future.

User Data

 Data was pivotal for the success of this project, and a great deal of work went into

choosing the correct data source and reading it into the program. As previously noted, the

counseling program was scheduling courses using a Microsoft Excel file called the “loadsheet”

which tracked the course load assigned to each professor, as well as multiple Microsoft Word

files called “plans of study” which detailed the required courses for each specialty track by

semester. The decision was made to use these files as input in the program because the

counseling department was already familiar with them, and the main goal was to reduce their

workload. In addition, a new .csv file had to be created to store the earliest and latest time that

courses could be scheduled for each day of the week. This was important to prevent courses from

being scheduled at 5:00 AM, 11:30 PM, or other unrealistic hours.

 Options for reading in data from an Excel (.xlsx) file in Python are relatively limited. The

6

Pandas package is an open source, BSD-licensed library providing high-performance, easy-to-

use data structures and data analysis tools for the Python programming language (Python Data

Analysis Library). Not only does pandas have the capability to read in .xlsx data into an easy to

use and understand dataframe, but it also is available as part of the easy to install Anaconda

environment which made it perfectly suited for this project (Anaconda Python/R Distribution).

Packages for reading in data from a table in a Word (.docx) file were also obscure. The Python-

docx library was a library mainly for constructing and modifying Word files, but ultimately it did

have the capability to pull data from a table in a Word document (Python-Docx). These libraries

enabled the use of the legacy documents which will make the change to the new system

smoother than if entirely new documents had to be created.

Class Scheduler

 Originally the sole purpose for the project, the class scheduling portion of the project

remained the focus throughout the project. As work began on the project the most important

question became, “How much leeway should the program be given?” Should the program be

able to choose the day of the week the class is offered? The dates it is offered? The semester it is

offered? Ultimately, giving the class scheduling program more control added more complexity to

the program, and the counselor education department was reluctant to cede too much of their

autonomy to a computer program, so the decision was made to allow the program to only choose

the time of day each course was offered. This allowed professors to choose the day of the week

they wanted to teach each course, while the class scheduling application chose a time that

ensured there would not be any conflicts.

 The completed class scheduling application consists of three parts: an html front end, a

PHP layer to transport uploaded files, and a Python back end to perform calculations and update

7

the files. When files are uploaded via the front end, they are temporarily stored in a folder on the

server where they can be accessed. After upload is completed, the PHP script operating on the

server calls the Python script using PHP’s exec() command. This is equivalent to running the

Python script via the command line, and allows command line arguments (the location of the

temporarily stored files) to be passed in. Three to five input files can be passed in, one partially

completed loadsheet, one to three plans of study, and one file detailing the possible start and end

times for classes on each day of the week. The output of the Python scrip is a fully completed

loadsheet. In essence, the script assigns a start and end time to each course based on the number

of credit hours and professor availability while avoiding the creation of conflicts between

courses that must be taken concurrently. The completed loadsheet is then made available to the

user as a download. Upon completion of that download, all uploaded and created files on the

server are erased by the PHP script. This ensures that the server’s file system will never be

inundated with unnecessary files, and that the server will not have memory issues even after

thousands of load sheets are created.

Figure 4 - Class Scheduling Front End

8

CACREP Ratio Calculator

 The secondary purpose of this project was to calculate the student to faculty ratio using

the CACREP standards. Originally, this was simply a side project, but after the efficiency of the

class scheduler was realized, it was determined that a calculator for the CACREP accreditation

student to teacher ratio was a must have for the program. There are several steps to calculating

this ratio for a semester, the first of which is calculating the number of full-time equivalent or

FTE students are attending the program. This can be calculated by dividing the total number of

student credit hours by the number of hours needed to be a full-time student (9 for NNU’s

counseling department). Next, the number of FTE professors must be determined. The

information for this can all be found on the loadsheet. Firstly, all full-time faculty count as 1 full-

time faculty unless they are teaching an overload in which case they count as 1 +
𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝐻𝑜𝑢𝑟𝑠

𝐹𝑇𝐸𝐻𝑜𝑢𝑟𝑠
.

Adjunct professors are also part of the calculation in which they count as
𝑙𝑜𝑎𝑑𝐻𝑜𝑢𝑟𝑠

𝐹𝑇𝐸𝐻𝑜𝑢𝑟𝑠
. The total

FTE professors is then the number of FTE full time professors + the number of FTE adjunct

professors. Finally, the number of FTE students is divided by the number of FTE professors

which gives the CACREP approved student to teacher ratio. While this student to faculty ratio is

calculated on a per semester basis, it can then be averaged with other semesters to find the yearly

ratio. The goal for each year is to have a CACREP student to teacher ratio of under 12, as that is

the ratio required to maintain accreditation (Urofsky).

 The CACREP ratio calculator was built in a similar manner to the class scheduling

portion of the project. Once again, it consists of an html frontend, a PHP middle layer, and a

Python backend that does the calculations. The input for the CACREP ratio calculator consists of

an html form containing: one file upload for the loadsheet, a dropdown selector for the semester

to calculate, a textbox for the number of student credit hours, and an optional textbox for the

9

FTE Hours (defaulted to 9). This form is then sent to the PHP server-side script using the HTTP

post method which is necessary to send file data, and also keeps the information private. The

PHP script then checks the form data sent to confirm it contains the correct file type and data

types for each field. Finally, the form data is formatted into a string and passed to the Python

script as arguments. After the Python script calculates the CACREP ratio using the formula

previously mentioned, the data is passed back to the PHP script and displayed to the user using

the PHP echo() function. This setup allows the user to conveniently calculate the student to

faculty ratio on demand without having to download files. After completion of the CACREP

Ratio Calculator, it was used to determine the CACREP Ratio for the fall 2018 and spring 2019

semesters. The same calculations were also performed by hand as they have been in the past. The

results from the automated calculator and the hand done calculations were compared in order to

confirm the accuracy of the calculator. The automated CACREP Ratio Calculator produced the

correct results which proved it could now be used in place of calculations done by hand.

Figure 5 - CACREP Ratio Calculator Front End

10

Hosting the Project

 Although the project was developed locally, once it was completed it was important to

host the project, so it was available on the world wide web. The domain nnu-counseling-

calculator.tk was chosen because .tk domains are available for free from FreeNom.com. Having

a domain ensured that users would not have to access the website via IP address which is much

more cumbersome. In the interest of providing a long-term server without having to make

monthly or yearly payments, a home server was chosen to host the website instead of a cloud

server. This home server was configured as a Linux, Apache, MySQL, and PHP or LAMP stack

and was assigned a static IP address on its local network. Anaconda, the right Python version,

and the appropriate packages were also installed. The router was then configured to forward all

activity on 184.155.121.122:80 (web requests to the router’s public IP address) to the web server.

Finally, the domain nnu-counseling-calculator.tk was made to forward all traffic to

184.155.121.122:80. This created a fully functioning website that was accessible anywhere in the

world and that had no monthly or yearly fees attached.

Future Work

 While the class scheduling app and CACREP ratio calculator are certainly functional,

there are still some improvements that could be made. One area where future work will be

necessary is in protecting the website from user errors and providing useful error messages when

they do occur. The program needs the loadsheet to be consistently formatted and is unable to

handle files that deviate from the norm. While the program contains built in checks for file type

and other basic inconsistencies, it currently lacks advanced detection that many users have grown

to expect. In the future, modifying the program to automatically correct errors in the formatting

of the loadsheet or to inform the user of changes they need to make will be a high priority task.

11

 Another possible area for future work is the generalization of a class scheduling

application. This program works as an impressive proof of concept showing how an automated

course scheduler can work for one specific department. In order to market this product to a more

generalized population, work would need to be done to move away from the use of institution

specific data such as the loadsheet and to develop a more generalized method of data entry.

There is a significant demand for automated scheduling in college courses, and the creation of a

generalized, easy to use scheduler could be extremely marketable.

Conclusion

 Overall, this project was challenging, a great learning experience, and a joy to work on.

While the coding was difficult in itself, the biggest challenge came from a systems analysis and

design perspective. The project started as little more than an idea, so vast amounts of

requirements discovery, feasibility considerations, expectation setting, and discussions with

nontechnical users had to take place before the design phase could even be started. This was an

extremely valuable portion of the project as it gave experience that is not replicable in the

classroom. In addition to the learning opportunity that the project provided, the scheduling and

accreditation tool is a valuable resource for NNU’s counselor education department as it

provides increased productivity through automation.

12

References

“Anaconda Python/R Distribution.” Anaconda, www.anaconda.com/distribution/.

“Online Diagram Software & Visual Solution.” Lucidchart, 13 Nov. 2018,

www.lucidchart.com/.

“Python Data Analysis Library.” Pandas, pandas.pydata.org/.

“Python-Docx.” Python-Docx, python-docx.readthedocs.io/en/latest/

Urofsky, Robert I. “A Reasoned Approach to FTE Faculty.” CACREP,

www.cacrep.org/articles/a-reasoned-approach-to-fte-faculty/..

13

Appendix A

index.html

<!doctype html>

<html>

 <head>

 <link rel="stylesheet" href="style.css">

 <title>Class Scheduler</title>

 </head>

 <body>

 <h3 class = "topInfo">

 Class Scheduling App

 </h3>

 <div class="navHolder">

 Scheduler

 Cacrep Ratio

 </div>

 <div class = "main">

 <form action="submit.php" method = "POST" enctype="multipart/form-

data">

 <div class = "section">

 <div class="sectionTitle">

 Load Sheet

 </div>

 <input type = "file" name = "loadsheet">

 </div>

 <div class = "section">

 <div class="sectionTitle">

 Plans of study

 </div>

 <div>

 <input type = "file" name = "pos1">

 </div>

 <div>

 <input type = "file" name = "pos2">

 </div>

 <div>

14

 <input type = "file" name = "pos3">

 </div>

 </div>

 <div class = "section">

 <div class="sectionTitle">

 Start Times

 </div>

 <input type = "file" name = "starttimes">

 </div>

 <div class = "section">

 <input type = "submit" value="submit">

 <input type = "reset" value = "clear">

 </div>

 </form>

 </div>

 </body>

</html>

calculator.html

<!DOCTYPE html>

<html>

 <head>

 <link rel="stylesheet" href="style.css">

 <title>Cacrep Calculator</title>

 </head>

 <body>

 <h3 class = "topInfo">

 CACREP Ratio Calculator

 </h3>

 <div class="navHolder">

 Scheduler

 Cacrep Ratio

 </div>

 <div class = "main">

 <form action="calculate.php" method="POST" enctype="multipart/form-

data">

 <div class="section">

 <div class="sectionTitle">

 Load Sheet

 </div>

15

 <input type="file" name="loadSheet">

 </div>

 <div class="section">

 <div class="sectionTitle">

 Semester

 </div>

 <select name="semester">

 <option value="0">Fall</option>

 <option value="1">Spring</option>

 <option value="2">Summer</option>

 </select>

 </div>

 <div class="section">

 <div class="sectionTitle">

 Student Credit Hours

 </div>

 <input type="text" name="hours">

 </div>

 <div class="section">

 <div class="sectionTitle">

 Full Time Equivalent Hours (9 Is Standard)

 </div>

 <input type="text" name="fte">

 </div>

 <div class = "section">

 <input type = "submit" value="submit">

 <input type = "reset" value = "clear">

 </div>

 </form>

 </div>

 </body>

</html>

style.css

.navHolder {

 height: 100%;

 width: 200px;

 position: fixed;

 z-index: 1;

 top: 0;

 left: 0;

 background-color: #be0f34;

 overflow-x: hidden;

16

 }

 /* Side navigation links */

.navCell {

 color: white;

 padding: 8px;

 font-size:20px;

 text-decoration: none;

 display: block;

 }

 /* Change color on hover */

 .navCell:hover {

 background-color: #bbb;

 color: black;

 }

 .sidebarImg{

 max-width: 180px;

 max-height: 80px;

 display: inline-block;

 margin-left: 45px;

 }

 .topInfo{

 padding-top: 15px;

 width:100%;

 height: 67px;

 background-color:#bbb;

 text-align: center;

 font-size: 35px;

 margin-top: 0px;

 margin-bottom: 0px;

 }

 body {

 margin: 0;

 font-family: Verdana, Geneva, Tahoma, sans-serif;

 }

 .main {

 padding-top: 10px;

 margin-left: 200px;

 padding-left: 20px;

 font-size: 20px;

 }

17

 .section{

 margin: 10px;

 }

 .section input[type="submit"] {

 width:80px;

 height:30px;

 margin: 2px 2px 2px 0px;

 }

 .section input[type="reset"]{

 width:80px;

 height:30px;

 margin: 2px 2px 2px 0px;

 }

 .section input[type="text"]{

 width: 80px;

 margin: 2px 2px 2px 0px;

 }

 .section select{

 width: 80px;

 margin: 2px 2px 2px 0px;

 }

 .sectionTitle{

 margin-bottom: 5px;

 }

submit.php

<?php

//Function to delete all files in directory

//Takes string of file path as argument

function deleteFiles($path)

{

 $files = glob($path . "*");

 foreach($files as $file){

 if(is_file($file))

 {

18

 unlink($file);

 }

 }

}

//Function to run class scheduling app based on files sent from html

function runScheduler()

{

//temporary storage location for uploaded files

$uploaddir = 'C:/xampp/htdocs/temp/';

$pycallstring = "";

//Error checking for files to ensure correct type and size uploaded

foreach($_FILES as $myfile)

{

 if($myfile['type'] == "application/vnd.openxmlformats-

officedocument.spreadsheetml.sheet"

 || $myfile['type'] == "application/vnd.openxmlformats-

officedocument.wordprocessingml.document"

 || $myfile['type'] == "text/csv"

 || $myfile['type'] == ""

 || $myfile['type'] == "application/vnd.ms-excel"

 && $myfile['size'] <= 1000000)

 {

 $uploadfile = $uploaddir . basename($myfile['name']);

 move_uploaded_file($myfile['tmp_name'], $uploadfile);

 $pycallstring .= str_replace('\\', '/', $uploadfile) . " ";

 }

 else

 {

 echo($myfile['type']);

 echo(" not allowed
");

 return;

 }

}

//execute python code and return result as well as any error messages produced

exec("D:/Users/Zacht/Anaconda3/envs/classSchedulingApp/python.exe

classSchedulingApp/scheduler.py $pycallstring 2>&1", $output, $returnval);

//if successful

if($returnval == 0)

{

$outfile = $uploaddir . "filledOutSchedule.xlsx";

if(file_exists($outfile))

{

 header('Content-type: application/vnd.ms-excel');

 header('Content-Disposition: attachment; filename="'.basename($outfile).'"');

 header('Pragma: no-cache');

19

 header("Expires: 0");

 readfile($outfile);

}

}

else{

 echo "ERROR", "
";

 foreach($output as $line)

 {

 echo($line);

 echo("
");

 }

}

}

//call functions

runScheduler();

deleteFiles('C:/xampp/htdocs/temp/');

?>

calculate.php

<!DOCTYPE html>

<?php

//function to delete files in directory

function deleteFiles($path)

{

 $files = glob($path . "*");

 foreach($files as $file){

 if(is_file($file))

 {

 unlink($file);

 }

 }

}

//globals to pass data to html portion

$output = "";

$returnval = "";

//Function to calculate CACREP Ratio

function runCalculator()

{

//temporary location for uploaded files

$uploaddir = 'C:/xampp/htdocs/temp/';

$pycallstring = "";

20

//error checking for uploaded files

foreach($_FILES as $myfile)

{

 if($myfile['type'] == "application/vnd.openxmlformats-

officedocument.spreadsheetml.sheet"

 || $myfile['type'] == "application/vnd.openxmlformats-

officedocument.wordprocessingml.document"

 || $myfile['type'] == "text/csv"

 || $myfile['type'] == ""

 || $myfile['type'] == "application/vnd.ms-excel"

 && $myfile['size'] <= 1000000)

 {

 $uploadfile = $uploaddir . basename($myfile['name']);

 move_uploaded_file($myfile['tmp_name'], $uploadfile);

 $pycallstring .= str_replace('\\', '/', $uploadfile) . " ";

 }

 else

 {

 echo($myfile['type']);

 echo(" not allowed
");

 return;

 }

}

foreach($_POST as $postData)

{

 if(is_numeric($postData))

 {

 $pycallstring .= $postData . " ";

 }

 else{

 echo("Data must be integer
");

 return;

 }

}

//execute python script with arguments uploaded from html form

 exec("D:/Users/Zacht/Anaconda3/envs/classSchedulingApp/python.exe

classSchedulingApp/calculator.py $pycallstring 2>&1", $GLOBALS["output"],

$GLOBALS["returnval"]);

}

//run functions

runCalculator();

deleteFiles('C:/xampp/htdocs/temp/');

//html to display result of running calculator

?>

<html>

21

 <head>

 <link rel="stylesheet" href="style.css">

 <title>Cacrep Calculator</title>

 </head>

 <body>

 <h3 class = "topInfo">

 Cacrep Ratio Calculator

 </h3>

 <div class="navHolder">

 Scheduler

 Cacrep Ratio

 </div>

 <div class = "main">

 <?php if($returnval == 0)

 {

 echo("Ratio = ");

 foreach($output as $line)

 {

 echo round($line, 3);

 echo "
";

 }

 }

 else

 {

 echo("ERROR!");

 echo("
");

 foreach($output as $line)

 {

 echo $line;

 echo "
";

 }

 }?>

 <div>

 <button onclick="goBack()">Back</button>

 <script>

 function goBack() {

 window.history.back();

 }

 </script>

 </div>

 </div>

 </body>

 </html>

22

calculator.py

from scheduler import Scheduler

import pandas as pd

from docx.api import Document

import dateTime as dt

from openpyxl import *

#Calculator class is subclass of Scheduler classs

class CacrepCalculator(Scheduler):

 # Uses Scheduler class function to read excel sheet and parses to determine a

list of full time professors

 def getFullTimeFaculty(self, loadsheet):

 fullTimeProfessors = []

 self.df = pd.read_excel(loadsheet, 5)

 for x in range(0, len(self.df["Full time faculty"])):

 fullTimeProfessors.append(self.df["Full time faculty"][x])

 return fullTimeProfessors

 # Calculates CACREP ratio for one semester

 def calculateCacrepRatio(self, loadsheet, semester, studentCreditHours, FTE =

9):

 studentFTE = studentCreditHours/FTE

 adjunctFTE = 0

 # uses scheduler class functions to obtain data from loadsheet

 self.getLoadSheetData(loadsheet, False, semester)

 fullTimeFaculty = self.getFullTimeFaculty(loadsheet)

 # Calculate full time faculty + overload hours

 for professor in self.professors:

 if professor in fullTimeFaculty:

 loadHours = self.professors[professor].getLoadHours()

 if loadHours > FTE:

 adjunctFTE += (loadHours - FTE)/FTE

 else:

 # Calculate adjunct faculty hours

 loadHours = self.professors[professor].getLoadHours()

 adjunctFTE += (loadHours)/FTE

 fullTimeFTE = len(fullTimeFaculty)

 facultyFTE = fullTimeFTE + adjunctFTE

 ratio = studentFTE / facultyFTE

 return ratio

23

if __name__ == '__main__':

 import sys

 myCalculator = CacrepCalculator()

 ratio = myCalculator.calculateCacrepRatio(sys.argv[1], int(sys.argv[2]),

int(sys.argv[3]), int(sys.argv[4]))

 print(ratio)

course.py

import dateTime as dt

class Course:

 def __init__(self, courseNumber, section, subSession, dates, modality,

loadHours, workCode, day, row, time=""):

 self.courseNumber = courseNumber

 self.section = section

 self.subSession = subSession

 self.dates = dt.splitDate(dates)

 self.modality = modality

 self.loadHours = loadHours

 self.workCode = workCode

 self.time = dt.splitTime(time)

 self.row = row

 try:

 self.day = list(day)

 except:

 self.day = ""

dateTime.py

from datetime import datetime

from datetime import timedelta

converts a string of format 8:20 PM - 10:00 PM to list of date time objects

def splitTime(time):

 try:

 return [datetime.strptime(item, "%I:%M %p") for item in time.split(" -

")]

 except:

 return ""

24

converts a string of format 12/15/18 - 12/30/18 to list of date time objects

def splitDate(date):

 try:

 return [datetime.strptime(item, "%m/%d/%y") for item in date.split(" -

")]

 except:

 return ""

compares two ranges of dates or times with the td1 and td2 being the 1st range.

td3 and td4 represent the 2nd range

def compareTimesOrDates(td1, td2, td3, td4):

 if td1 == td4 or td2 == td3:

 return False

 elif td1 >= td3 and td1 <= td4:

 return True

 elif td2 >= td3 and td2 <= td4:

 return True

 elif td3 >= td1 and td3 <= td2:

 return True

 else:

 return False

professor.py

class Professor:

 def __init__(self, ID, fullName):

 self.ID = ID

 self.fullName = fullName

 self.courses = []

returns professor course load

 def getLoadHours(self):

 load = 0

 for course in self.courses:

 if course.workCode == "Teaching" or course.workCode == "teaching":

 load += float(course.loadHours)

 return load

25

scheduler.py

import pandas as pd

from docx.api import Document

import dateTime as dt

from openpyxl import *

Class to hold information on each course on the load sheet

from course import Course

#Class to hold information on each professor on the load sheet

from professor import Professor

Class to do most of work. Uses the Courses and Professor classes

class Scheduler:

 def __init__(self):

 # dictionary of professors indexed by professor ID

 self.professors = {}

 # will hold courses that are not currently assigned to a professor

 # self.unassignedCourses = []

 # pandas data frame to make input of .xlxs file easier

 self.df = ""

 # Holds unique ID's to ensure professors aren't stored more than once

 self.uniqueFacultyIDs = []

 # List of dictionarys using the sequence as a key and a list of course

numbers as the value

 self.possibleConflicts = []

 # Dict of possible start times for courses

 self.startTimes = {}

input function to get information from loadsheet. Loads professors and then

assigns courses to the professors

 def getLoadSheetData(self, loadSheet, filledOut, semester = 0):

 # Using Pandas read excel function to get input into dataframe

 self.df = pd.read_excel(loadSheet, semester)

looping through data frame to move data into professor and courses classes

 for x in range(0, len(self.df["Faculty ID"])):

26

 if self.df["Faculty ID"][x] not in self.uniqueFacultyIDs:

 self.uniqueFacultyIDs.append(self.df["Faculty ID"][x])

 self.professors[self.df["Faculty ID"][x]] =

Professor(self.df["Faculty ID"][x], self.df["Name"][x])

 if not filledOut:

 self.professors[self.df["Faculty

ID"][x]].courses.append(Course(self.df["Course Number"][x],

self.df["Sec"][x],

self.df["Sub Session"][x],

self.df["Dates"][x],

self.df["Modality"][x],

self.df["Load Hrs"][x],

self.df["Work Code"][x],

self.df["Days"][x],

 x

+ 2))

 elif filledOut:

 self.professors[self.df["Faculty

ID"][x]].courses.append(Course(self.df["Course Number"][x],

self.df["Sec"][x],

self.df["Sub Session"][x],

self.df["Dates"][x],

self.df["Modality"][x],

self.df["Load Hrs"][x],

self.df["Work Code"][x],

self.df["Days"][x]),

 x

+ 2,

self.df["Time"][x])

27

Input function for study plan. This is a word doc containing a table with

information about class sequences

Uses python-docx to get input and will use this information to determine

possible course scheduling conflicts

 def getPlanOfStudy(self, planOfStudy, planOfStudy1, planofStudy2):

 # python-docx container for document read

 document = Document(planOfStudy)

 table = document.tables[0]

 courseNum = ""

 # sequence holds the semester in which a course should be taken

 sequence = ""

 # looping through table by row

 for i, row in enumerate(table.rows):

 for j, cell in enumerate(row.cells):

 # necessary information in 1st and 4th row

 if i != 0 and j == 0:

 courseNum = cell.text

 if i != 0 and j == 3:

 sequence = cell.text

 # First row contains headers so shouldn't look at its information

 if i == 0:

 found = True

 found1 = True

 found2 = True

 else:

 found = False

 found1 = False

 found2 = False

 # search through list of dicts for last read in sequence

 if "or" in sequence:

 sequence = sequence.split("or")

 sequence[0] = sequence[0].rstrip("")

 sequence[1] = sequence[1].lstrip("")

 for section in self.possibleConflicts:

 # it it is there add last read in course number to it

 if not isinstance(sequence, list):

 if sequence in section:

 section[sequence].append(courseNum)

 found = True

 if isinstance(sequence, list):

 if sequence[0] in section:

 section[sequence[0]].append(courseNum)

 found1 = True

28

 if sequence[1] in section:

 section[sequence[1]].append(courseNum)

 found2 = True

 # else create new dictionary with sequence and courseNum and

append to possibleConflicts

 if found == False and not isinstance(sequence, list):

 section = {sequence: []}

 section[sequence].append(courseNum)

 self.possibleConflicts.append(section)

 if found1 == False and isinstance(sequence, list):

 section = {sequence[0]: []}

 section[sequence[0]].append(courseNum)

 self.possibleConflicts.append(section)

 if found2 == False and isinstance(sequence, list):

 section = {sequence[1]: []}

 section[sequence[1]].append(courseNum)

 self.possibleConflicts.append(section)

Function to check for a conflict between two courses

Using Date Time functions to compare date and time

 def checkForConflict(self, course1, course2):

 try:

 if course1.day == course2.day:

 if dt.compareTimesOrDates(course1.dates[0], course1.dates[1],

course2.dates[0], course2.dates[1]):

 # All friday saturday courses are taught at same time so they

always conflict

 if course1.day[0] == "F" and course1.day[1] == "S":

 return True

 if dt.compareTimesOrDates(course1.time[0], course1.time[1],

course2.time[0], course2.time[1]):

 return True

 return False

 except:

 return False

Function to call check for conflict to compare 1 course to every other course

 def findAllConflicts(self, compareCourse, parentProf):

 for profid, prof in self.professors.items():

 for crs in prof.courses:

 # Conflicts determined by professor and plan of study

 if crs in parentProf.courses or

self.searchConflictList(compareCourse, crs):

 if self.checkForConflict(compareCourse, crs) and crs !=

compareCourse:

 return True

 return False

29

Searches the conflict list to determine if a conflict matters

 def searchConflictList(self, course1, course2):

 for sequence in self.possibleConflicts:

 for key in sequence:

 # Slice to get only course num not the name

 if course1.courseNumber[:8] in sequence[key]:

 if course2.courseNumber[:8] in sequence[key]:

 return True

 return False

load csv file with the earliest and latest start times for Monday - Saturday

courses

 def loadStartTimes(self, filename):

 import csv

 with open(filename) as csv_file:

 csv_reader = csv.reader(csv_file)

 for row in csv_reader:

 self.startTimes[row[0]] = dt.splitTime(row[1])

Schedules courses based on potential start times

Days are filled from earliest to latest start times

Course moves back if it conflicts with another course

Course moved back in 30 minute increments

Assuming 1 hour for each load hour unless a F-S class

 def scheduleCourses(self, filename, outfile):

 wb = load_workbook(filename)

 ws = wb.active

 # loop through all courses

 for prof in myScheduler.professors:

 for crs in myScheduler.professors[prof].courses:

 # replacing time column

 rowCol = "G" + str(crs.row)

 # only scheduling face to face teaching classes

 if crs.workCode == "Teaching" and crs.modality == "F2F" and

crs.day[0] != "F":

 crsStart = self.startTimes[crs.day[0]][0]

 crsEnd = crsStart + dt.timedelta(0,0,0,0,0,crs.loadHours)

 crs.time = [crsStart, crsEnd]

 # keep moving start time until there is no conflict

 while self.findAllConflicts(crs,

myScheduler.professors[prof]) and crsStart <= self.startTimes[crs.day[0]][1]:

 crsStart += dt.timedelta(0,0,0,0,30)

 crsEnd += dt.timedelta(0,0,0,0,30)

 crs.time = [crsStart, crsEnd]

30

 # write to file, using openpyxl

 ws[rowCol] = dt.datetime.strftime(crsStart, "%I:%M %p") + " -

" + dt.datetime.strftime(crsEnd, "%I:%M %p")

 # FS courses all taught at same times so hardcoded

 elif crs.workCode == "Teaching" and crs.modality == "F2F" and

crs.day[0] == "F":

 ws[rowCol] = "(F) 05:00 PM - 10:00 PM (S) 08:00 AM - 05:00

PM"

 wb.save(outfile)

if __name__ == '__main__':

 import sys

 myScheduler = Scheduler()

 outputpath = "/".join(sys.argv[1].split("/")[0: -1])

 myScheduler.getLoadSheetData(sys.argv[1], False, 0)

 myScheduler.getPlanOfStudy(sys.argv[2], sys.argv[3], sys.argv[4])

 myScheduler.loadStartTimes(sys.argv[5])

 myScheduler.scheduleCourses(sys.argv[1], outputpath +

"/filledOutSchedule.xlsx")

 pass

Appendix B

loadsheet.xlsx

31

Clinical.docx

Number Title Credits
Recommended

Sequence When Offered Pre-Requisites

COUN6511 The Profession of Counseling 2 1st Semester, Year 1
Every Fall &

Spring

COUN6512 Ethical and Legal Issues 3 1st Semester, Year 1
Every Fall &

Spring

COUN6515
Multicultural Counseling and

Societal Issues
3 1st Semester, Year 1

Every Fall &
Spring

COUN6531
Learning Process & Lifespan

Development
2 2nd Semester, Year 1 Every Fall &

Spring

COUN6532 Theories of Counseling 3 2nd Semester, Year 1
Every Spring

& Fall
COUN7553 Measurement & Assessment 2 2nd Semester, Year 1 Every Spring

COUN6542 Group Counseling 3 3rd Semester, Year 1
Every Summer

& Fall

COUN6551
Diagnosis & Treatment of

Psychopathology
3 3rd Semester, Year 1 Every Summer

COUN6552 Addictions Counseling 2 3rd Semester, Year 1 Every Summer

COUN6533 Family Counseling Theories 2 4th Semester, Year 2 Every Fall COUN6532

COUN6541
Pre-Practicum: Basic

Counseling Skills
3 4th Semester, Year 2

Every Fall &
Spring

COUN6512 &
COUN6532 may

be concurrent

COUN7537 Research and Statistics 3 4th Semester, Year 2 Every Fall

COUN7561 Practicum 3 4th Semester, Year 2
Every Fall &

Spring

COUN6511,COU
N6512,

COUN6541,
COUN6542 &
COUN6551 &
approved group

COUN6534 Career Development 3 5th Semester, Year 2
Every Spring
& Summer

COUN7582 Intro to Trauma and Crisis 1 5th Semester, Year 2
Every Fall &

Spring - online

COUN7589 Internship in Counseling 1-2 6th Semester, Year 2
Every Fall,
Spring &
Summer

COUN7561;
4 sessions
individual
counseling

COUN7572 Psychopharmacology 1 6th Semester, Year 2 Every Summer

COUN7589 Internship in Counseling 4-5 7th Semester, Year 3
Every Fall,
Spring &
Summer

COUN7561;
4 sessions
individual
counseling

COUN7523
Organization and Admin. of

Clinical Services
2 Year 2 or 3

Spring Odd
Years

COUN7563

Clinical Intervention &
Prevention

3

Year 2 or 3

Summer Odd
Years

COUN7589 Internship in Counseling 4-5 8th Semester, Year 3
Every Fall,
Spring &
Summer

COUN7561;
4 sessions
individual
counseling

32

MCFC.docx

Number Title
Credit

s
Recommended

Sequence When Offered Pre-Requisites
COUN651

1
The Profession of Counseling 2 1st Semester, Year 1

Every Fall &
Spring

COUN651
2

Ethical and Legal Issues 3 1st Semester, Year 1
Every Fall &

Spring

COUN651
5

Multicultural Counseling and
Societal Issues

3 1st Semester, Year 1
Every Fall &

Spring

COUN653
1

Learning Process & Lifespan
Development

2 2nd Semester, Year 1
Every Fall &

Spring

COUN653
2

Theories of Counseling 3 2nd Semester, Year 1
Every Spring &

Fall

COUN755
3

Measurement & Assessment 2 2nd Semester, Year 1 Every Spring

COUN654
2

Group Counseling 3 3rd Semester, Year 1
Every Summer

& Fall

COUN655
1

Diagnosis & Treatment of
Psychopathology (DSM)

3 3rd Semester, Year 1 Every Summer

COUN655
2

Addictions Counseling 2 3rd Semester, Year 1 Every Summer

COUN653
3

Family Counseling Theories 2 4th Semester, Year 2 Every Fall COUN6532

COUN654
1

Pre-Practicum: Basic
Counseling Skills

3 4th Semester, Year 2
Every Fall &

Spring

COUN6512 &
COUN6532 may be

concurrent
COUN753

7
Research and Statistics 3 4th Semester, Year 2 Every Fall

COUN756
1

Practicum 3 4th Semester, Year 2
Every Fall &

Spring

COUN6511,COUN651
2, COUN6541,
COUN6542 &
COUN6551 &
approved group

COUN753
1

Meta-Theoretical Practices in
MCFC

2 4th Semester, Year 2 Every Fall COUN6533

COUN653
4

Career Development 3 5th Semester, Year 2
Every Spring &

Summer

COUN758
2

Intro to Trauma and Crisis 1 5th Semester, Year 2
Every Fall &

Spring - online

COUN758
9

Internship in Counseling 1-2 6th Semester, Year 2
Every Fall,
Spring &
Summer

COUN7561;
4 sessions individual

counseling

COUN757
2

Psychopharmacology 1 6th Semester, Year 2 Every Summer

COUN753
3

Advanced Models &
Interventions in MCFC

2 Spring, Year 2 or 3
Spring Odd

Years
COUN6533 &

COUN7531

COUN753
5

Contemporary Directions in
MCFC

1 Spring, Year 2 or 3
Spring Odd

Years
COUN6533 &

COUN7531

COUN752
9

Human Sexuality 1 Summer, Year 2 or 3
Summer Odd

Years

COUN753
2

MCFC Assessment &
Evaluation

2 Summer, Year 2 or 3
Summer Even

Years
COUN6533,
COUN7531

COUN753
8

Family Education Experience 1 Summer, Year 2 or 3
Summer Odd

Years

33

COUN753
4

Clinical Issues in MCFC 2 Fall, Year 2 or 3 Fall Even Years
COUN6533 &

COUN7531 may be
concurrent

COUN758
9

Internship in Counseling 4-5 7th Semester, Year 3
Every Fall,
Spring &
Summer

COUN7561; 4 sessions
individual counseling

COUN758
9

Internship in Counseling 4-5 8th Semester, Year 3
Every Fall,
Spring &
Summer

COUN7561;
4 sessions individual

counseling

School.docx

Number Title Credits Recommended
Sequence

When Offered Pre-Requisites

COUN6511 The Profession of Counseling 2 1st Semester, Year 1 Every Fall &
Spring

COUN6512 Ethical and Legal Issues 3 1st Semester, Year 1 Every Fall &
Spring

COUN6515 Multicultural Counseling and
Societal Issues

3 1st Semester, Year 1 Every Fall &
Spring

COUN6531 Learning Process & Lifespan
Development

2 2nd Semester, Year 1 Every Fall &
Spring

COUN6532 Theories of Counseling 3 2nd Semester, Year 1 Every Spring
& Fall

COUN7553 Measurement & Assessment 2 2nd Semester, Year 1 Every Spring

COUN6542 Group Counseling 3 3rd Semester, Year 1 Every Summer
& Fall

COUN6551 Diagnosis & Treatment of
Psychopathology

3 3rd Semester, Year 1 Every Summer

COUN6552 Addictions Counseling 2 3rd Semester, Year 1 Every Summer

COUN6533 Family Counseling Theories 2 4th Semester, Year 2 Every Fall COUN6532

COUN6541 Pre-Practicum: Basic
Counseling Skills

3 4th Semester, Year 2 Every Fall &
Spring

COUN6512 &
COUN6532 may

be concurrent
COUN7537 Research and Statistics 3 4th Semester, Year 2 Every Fall

COUN7521 School Counseling 2 4th Semester, Year 2 Every Fall

COUN7561 Practicum 3 4th Semester, Year 2 Every Fall &
Spring

COUN6511,COU
N6512,

COUN6541,
COUN6542 &
COUN6551 &
approved group

COUN6534 Career Development 3 5th Semester, Year 2 Every Spring
& Summer

COUN7582 Intro to Trauma and Crisis 1 5th Semester, Year 2 Every Fall &
Spring - online

COUN7589 Internship in Counseling 1-2 6th Semester, Year 2 Every Fall,
Spring &
Summer

COUN7561;
4 sessions
individual
counseling

COUN7524 Organization of
Comprehensive School

Counseling Services

2 5th Semester, Year 2 or
8th Semester, Year 3

Spring Odd
Years

COUN7521

34

COUN7545 Collaboration & Consultation 2 6th Semester, Year 2 or
9th Semester, Year 3

Summer Even
Years

COUN7521

COUN7589 Internship in Counseling 4-5 7th Semester, Year 3 Every Fall,
Spring &
Summer

COUN7561;
4 sessions
individual
counseling

COUN7589 Internship in Counseling 4-5 8th Semester, Year 3 Every Fall,
Spring &
Summer

COUN7561;
4 sessions
individual
counseling

startTimes.csv

		Barry Myers <blmyers@nnu.edu>
	2019-05-06T14:45:20+0000
	Barry Myers: 43°33′46″N 116°33′58″W (37.0 m)
	Certify the signature of Barry Myers <blmyers@nnu.edu>

