

Northwest Nazarene University

Using Machine Learning to Improve Data Collection of Wildland Fires in

Forested Areas

THESIS

Submitted to the Department of Mathematics & Computer Science in

partial fulfillment of the requirements

for the degree of

BACHELOR OF SCIENCE

Kamden Brothers

2021

THESIS

Submitted to the Department of Mathematics & Computer Science in

partial fulfillment of the requirements

for the degree of

BACHELOR OF SCIENCE

By

Kamden Brothers

2021

Using Machine Learning to Improve Data Collection of Wildland Fires

Author: _______________________________________

 Kamden Brothers

Approved _____________________________________

 Dr. Dale Hamilton, Department of Mathematics and Computer Science

 Advisor

Approved _____________________________________

 David Hille, Department of Wildlife Biology and Ecology

 Second Reader

Approved ____________________________________

Dr. Barry Myers, Department of Mathematics and Computer Science

Department Chair

David C Hille (Apr 30, 2021 16:00 MDT)
David C Hille

https://na2.documents.adobe.com/verifier?tx=CBJCHBCAABAA4EwQZ-lpj_-_YD90mcOSGTH-asSv6vwQ
https://na2.documents.adobe.com/verifier?tx=CBJCHBCAABAA4EwQZ-lpj_-_YD90mcOSGTH-asSv6vwQ
https://na2.documents.adobe.com/verifier?tx=CBJCHBCAABAA4EwQZ-lpj_-_YD90mcOSGTH-asSv6vwQ

iii

Abstract

Using Machine Learning to Improve Data Collection of Wildland Fires.

 Brothers, Kamden (Department of Mathematics and Computer Science),

HAMILTON, DR. DALE (Department of Mathematics and Computer Science)

Using machine learning algorithms on imagery obtained from small unmanned aircraft

systems (sUAS) has been an efficient and accurate way to collect data on postfire forests.

This effort applies machine learning to obtain useful information about postfire forests. It

uses a mask region-based convolutional neural network (MR-CNN) to as well as a

support vector machine (SVM) to tree mortality as well as burn extent. Using machine

learning helps automated the process while still having accurate data. Having fast and

accurate process to calculate the damage done by a fire helps land managers make a

quick and calculated response to aid in forest rehabilitation.

iv

Acknowledgements

 I would like to thank Dr. Hamilton for this opportunity to be a part of these

projects and all that he contributed to them. I would like to thank same for working with

me during the summer internship to complete the Tree Mortality project. I would like to

thank Jacob Winters for creating the creating the MR-CNN. I would like to thank Dr.

Colwell for helping decided how to do the statistical analysis. I would like to thank Cole

McCall and Bryn Gautier for creating calibration and validation data.

v

Contents
Cover Page …………….…………………………………………………………………..i

Signature Page ……………………………………………………………………………ii

Abstract ……………….………………………………………………………………….iii

Acknowledgements ..……………………………………………………………………..iv

1. Overview ... 1

2. Background ... 2

3. Methods... 2

3.1 The Tree Mortality Project .. 2

3.1.1 Data Preparation... 4

3.1.2 Classification and Comparison .. 5

3.2 The Tree Island Project .. 6

3.2.1 Machine Learning .. 7

3.2.2 Cleaner ... 8

4. Results ... 9

4.1 Results of Tree Mortality Project ... 9

4.1.1 Locating Trees in an Orthomosaic. .. 9

4.1.2 Highly Accurate Map of Canopy Cover .. 10

4.1.3 Canopy Cover Comparison .. 11

4.2 Results of Tree Island Project ... 13

5. Conclusion .. 14

5.1 Future Work... 15

Tables and Figures

Figure 1 – Tree Mortality Project Methods ………………………………………………4

Figure 2 – MR-CNN Output …………………………………………………………….10

Figure 3 – Canopy Cover Layer …………………………………………………………11

Figure 4 – High Severity Tree Mortality Map ………………………………..…………12

Figure 5 – Low Severity Tree Mortality Map ……………………………………….…..13

Figure 6 – Canopy and Burn Map ………………………………………………….……13

vi

Figure 7 – Cleaner and Tree Island Output ……………………………………………...14

Table 1 – Reclassification ………………………………………………………………...7

Table 2 – Specificity, Sensitivity and Accuracy of MR-CNN ……………………………9

1

1. Overview
 There were two parts to the research project, both of which involved fires in

forested areas, drone imagery, and, machine learning. The first part of the research was

“Wildland Fire Tree Mortality Mapping from Hyperspatial Imagery Using Machine

Learning” (Hamilton, 2021) and resulted in a published paper on Remote Sensing. This

research will be referred to as the Tree Mortality Project. A mask region-based

convolutional neural network (MR-CNN) was used along with other methods to calculate

the canopy cover of a forested area, creating a hyperspatially derived canopy cover

(HDCC) raster. These methods were first done on forested areas that had no recent

catastrophic changes. The HDCC raster was compared to LANDFIRE’s easily accessible

canopy cover layer derived from 30m satellite imagery to determine canopy cover

variation between the two methods. The same methods were then used on a postfire

forest (LANDFIRE had prefire data while HDCC was postfire). After accounting for bias

and variance, the difference between these two layers determined areas of tree mortality.

These methods created a highly automated process for calculating tree mortality.

 The second part of the research was concerned with burn extent. This research

will be referred to as the Tree Island Project. Dr. Hamilton found that using a Support

Vector Machine (SVM) on hyperspatial data was an automated, highly accurate way of

calculating burn extent (Hamilton, 2021); however, it was also observed that unburnt

canopy would sometimes obstruct vision underneath the tree. This would cause the SVM

to classify the tree as unburnt even though ground truthing determined that vegetation

underneath the tree did burn. This effort attempted to reconcile this problem by locating

trees surrounded completely by burn and concluding that underneath the tree was burnt as

2

well. The research used an SVM to locate burn pixels and an MR-CNN to locate

contiguous tree pixels.

2. Background

 One of the primary concerns for forest management is rehabilitating a forest after

a fire has burnt through it. In extreme circumstances, fires can “leave lands denuded of

vegetation and vulnerable to severe erosion and mudslides, which can contaminate

municipal water supplies and compromise water quality in streams and Lakes” (Nazzaro,

2006, p. 6). Burn severity and burn extent are useful statistics in helping forest managers

appropriately react to a fire’s damages. “The mapped fire severity and fire extent can be

used to improve both ecological and fuel management” (McCarthy, 2017, p. 64). The

Tree Island Project’s goal was to make a more accurate map of burn extent by

eliminating false negatives, while the Tree Mortality project was focused on burn severity

because one of the significant factors of burn severity is tree mortality. “Severity is

inherently multifactorial. Some aspects that can be readily quantified are the proportion

of foliage consumed or killed, and fire induced tree mortality” (Miquelajauregu, 2016, p.

2). These two projects are concerned with foliage consumption and tree mortality which

both help create a more accurate picture of burn severity. They automate the process and

allow land managers to acquire data about a fire severity quickly.

3. Methods

3.1 The Tree Mortality Project

The use of imagery from small unmanned aircraft systems (sUAS) has enabled

the production of more accurate data about the effects of wildland fire, enabling

land managers to make more informed decisions. The ability to detect trees in

3

hyperspatial imagery enables the calculation of canopy cover. A comparison of

hyperspatial post-fire canopy cover and pre-fire canopy cover from sources such

as the LANDFIRE project enables the calculation of tree mortality, which is a

major indicator of burn severity.

A mask region-based convolutional neural network was trained to classify trees as

groups of pixels from a hyperspatial orthomosaic acquired with a small unmanned

aircraft system. The tree classification is summarized at 30 m, resulting in a

canopy cover raster. A post-fire canopy cover is then compared to LANDFIRE

canopy cover preceding the fire, calculating how much the canopy was reduced

due to the fire. Canopy reduction allows the mapping of burn severity while also

identifying where surface, passive crown, and active crown fire occurred within

the burn perimeter… Assessment of canopy reduction mapping on a wildland fire

reflects observations made both from ground truthing efforts as well as

observations made of the associated hyperspatial sUAS orthomosaic (Hamilton,

2021).

The goal of this project was to automate the process of calculating tree mortality.

Figure 1 helps give an overview of the steps taken to convert an orthomosaic (multiple

aerial images combined to create one large top-down image) into a map of tree mortality.

4

Figure 1 (Hamilton, 2021)

3.1.1 Data Preparation

 In Figure 1, LFCC stands for LANDFIRE canopy cover, which is created by

Landsat using a support vector machine on 30m data. This data is collected by the United

States government and is easily accessible by US citizens. This data is collected across all

the USA, which means that any forest fire will have prefire data through LANDFIRE;

however, this data is at 30m resolution, affecting accuracy, and is only collected every

four years. This data has a low spatial and temporal resolution makes it a nonviable

choice for postfire data. Instead, small unmanned aircraft systems (sUAS) were used

since they are “...an affordable way to acquire imagery with much higher spatial

resolution (sub-decimeter) than was previously available. This hyperspatial imagery

5

produces homogeneous pixels which are comprised of a single class, resulting in higher

mapping accuracy” (Hamilton, 2021).

 Ten forests were flown to collect data to compare to the LFCC. These

orthomosaics had 5cm resolution and needed to be eventually converted to 30m data to

compare to the LFCC. These 5cm orthomosaics were larger than 1 GB, which caused

OpenCV (an open-source library used in the Snapper and Density Tool) to have

problems. To account for the orthomosaics being too large, they were split up into

smaller pieces. First, the LFCC was split into pieces then the 5cm orthomosaic was

cropped to these LFCC pieces. Doing it this way caused the edges on the splits of the

5cm data to match the splits of the 30m data. Snapper Tool, created by Nick Hamilton,

was used to add a border to the 5cm data to match the 30m data’s extent.

3.1.2 Classification and Comparison

 The data was classified using a mask region-based convolutional neural network

(MR-CNN) trained by Jacob Winters to locate contiguous tree pixels.

The ... (MR-CNN) is an algorithm for instance segmentation. It detects objects in

an image and determines which pixels comprise each object. When classifying an

image, MR-CNN begins by applying a convolutional neural network (CNN) to

extract features from the image. The features extracted from the image are used as

input for a region proposal network, which slides over the feature map and detects

regions of interest (RoIs) which are likely to contain objects. Each RoI is

evaluated further to determine what type of object, if any, is inside (in this case,

tree and non-tree); the object’s bounding box; and what pixels inside the bounding

box comprise the object (Hamilton, 2021).

6

 The MR-CNN created an output raster with pixels marked tree or not tree. Next, this tree

raster was run through the Density Tool, which counted the number of tree pixels in a

30m area and divided it by the total number of pixels. These processes created a 30m

hyperspatially derived canopy cover (HDCC) raster with the same extent as the LFCC.

 First, an HDCC was calculated for forests where there were no catastrophic

changes and compared to the LFCC to calculate the bias and variance. Then the same

processes were done on a forest where a fire burned. A null hypothesis was made to find

areas where it was known with 95% confidence that there had been a loss in canopy

cover.

3.2 The Tree Island Project

 Using a support vector machine (SVM) on imagery obtained from small

unmanned aircraft systems (sUAS) has been an efficient and fairly accurate method to

calculate burn extent. One problem that needs to be addressed is that the vegetation

underneath a tree cannot be seen in drone imagery and will be misclassified due to the

tree crown which is obscuring the surface vegetation in the image. This research assumes

that if a tree is completely surrounded by burnt pixels, then the vegetation under the tree

is burnt as well. An SVM was used to locate burn pixels and a mask region-based

convolutional neural network (Mask R-CNN) was used to locate clusters of pixels that

represent a tree crown. A program was created to located tree pixel clusters which were

completely surrounded in the image by pixels that had previously been classified as

burned by the SVM and included the cluster of tree crown pixels as being within the

extent of the burn. These methods yielded the best results on fires which had a clear

distinction between burn pixels, unburned pixels, and tree crowns. These new methods

7

created will help to calculate a more accurate burn extent from an image to help forest

managers rehabilitate burnt forests.

3.2.1 Machine Learning

 Both the SVM and MR-CNN are machine learning algorithms that automated the

process. A support vector machine takes the input of data for both positive and negative

cases. In this case, the data is the RGB band. It then uses these values to create a

hyperplane that best splits the data. After the hyperplane is created it is trained and ready

to classify an image. The SVM classifies each pixel based on which side of the

hyperplane it is on. One side is the positive case the other is the negative case. The other

machine learning algorithm used (MR-CNN) was explained in section 3.1.2.

 First, an SVM was used to locate burn pixels in a postfire orthomosaic. This

created a raster containing burnt and unburnt pixels. Next, the MR-CNN was used on the

same orthomosaic to create a raster containing canopy and surface pixels. These rasters

were then combined and reclassified so that unburn and surface pixels changed to surface

pixels, burn and surface pixels changed to burn pixels, unburn and canopy pixels changed

to canopy pixels, and burn and canopy pixels changed to canopy pixels. The

reclassification is more clearly stated in Table 1.

Input Output

Unburn + Surface Surface

Burn + Surface Burn

Unburn + Canopy Canopy

8

Burn + Canopy Canopy

Table 1 - Reclassification

The reason that burn and canopy pixels were changed to canopy pixels was because the

MR-CNN locates groups of pixels which makes sense in the context of each other but the

SVM just looks at pixels’ values. For this reason, it made more sense to keep the canopy

pixels together instead of the burn pixels.

3.2.2 Cleaner

 After the Classifiers’ outputs were combined there was a raster containing

surface, burn, and canopy pixels. This raster had the correct data to be entered into the

Tree Island program which locates canopy pixels completely surrounded by burn pixels,

however, it was noticed that the canopy pixels did not always go to the edge of trees.

These sections of surface pixels would cause problems in locating surrounded trees. To

fix this, a Cleaner program was created. This Cleaner locates areas of surface pixels

smaller than a specified number of pixels and changes them to burn pixels.

 Next, the output of the Cleaner was input into the Tree Island. This program

checked each tree to see if it was only touching other tree pixels and burn pixels. If this

case was true, then the tree was added to the burn extent.

 Determining the threshold to use for the size of surface pixel groups to remove

was done using calibration data. Polygons were created around trees that were either a

part of the burn extent and not part of the burn extent. These polygons were then

compared with the output of the Tree Island program and the threshold that yielded the

highest accuracy was chosen.

9

4. Results

4.1 Results of Tree Mortality Project

 Many different results were brought from the project. The first result was a highly

accurate, automated process to locate trees in an orthomosaic. The second result was a

highly accurate map of canopy cover from drone imagery and the final result is a map of

burn severity based on tree mortality.

4.1.1 Locating Trees in an Orthomosaic.

 The MR-CNN was run on orthomosaics from ten different forested areas. For

each orthomosaic validation data was created by drawing polygons around tree pixels and

then drawing polygons around nontree pixels. This group of polygons was then compared

to the output of the MR-CNN to calculate the specificity (false positives), sensitivity

(correctly identifying tree pixels), and accuracy (chance of correctly identifying any

pixel) of the MR-CNN. The results are in Table 2.

Accuracy Specificity Sensitivity

South Placerville 79.5% 98.2% 70.5%

NW Placerville 91.5% 95.1% 88.3%

Edna Creek 99.3% 100.0% 98.8%

South Exp. Forest 89.1% 99.0% 82.2%

North Exp. Forest 89.2% 99.2% 82.6%

East Placerville 95.5% 100.0% 91.6%

West Placerville 92.7% 100.0% 87.3%

Belshazzar 93.4% 93.9% 92.9%

Newstart 82.9% 99.4% 74.8%

10

Grimes Creek 96.9% 99.6% 94.7%

Table 2 (Hamilton, 2021)

 The classifier had 84% sensitivity, 99% specificity, and accuracy of 90%. The

MR-CNN was effective at locating the tree and only the tree. It also is automated so

larger areas can be classified with little work (Figure 2).

Figure 2 - CottonWood orthomosaic overlayed with MR-CNN output

The MR-CNN does a good job locating the trees; however, its main problem lies in

locating where the edges of the trees are. These inconsistencies do not change the map of

canopy cover a drastic amount (Hamilton, 2021).

4.1.2 Highly Accurate Map of Canopy Cover

 When the MR-CNN data was entered into the Density Tool the result was a map

of canopy cover. The output was then adjusted to account for the MR-CNN’s bias. The

numbers to adjust it came from the sensitivity of 84% and specificity of 99%. These

11

methods create a highly accurate map of canopy cover (Hamilton, 2021). Figure 3 shows

a map of the canopy cover of South Placerville.

Figure 3 - Canopy Cover of South Placerville

4.1.3 Canopy Cover Comparison

 I stated the results of the project in “Wildland Fire Tree Mortality Mapping from

Hyperspatial Imagery Using Machine Learning”

Ten orthomosaics where there was no fire were compared using the methods

stated above. LANDFIRE was over reporting by an average of 2.5% over the

HDCC layer. This agrees with what Scott stated, that the “canopy cover values

[for LANDFIRE] are too high.” The standard deviation for the difference between

each pixel was 14. This number is a little high and will hopefully be driven down

by future improvements…

The standard deviation and mean collected from the ten non-burnt orthomosaics

show that there needs to be at least a change of 27% to know there has been a

change with 95% confidence. If the difference is high enough to say there has

been a change next the HDCC layer can be looked at to see whether it was a

12

passive crown fire or an active crown fire. Pixels that did not contain adequate

canopy reduction (more than 26%) from comparing pre-fire LFCC to post-fire

HDCC are considered to be inconclusive. This would include unburned areas,

surface fire, passive crown fire, and active crown fire. If an area had less than

27% canopy cover then we cannot say whether any canopy reduction occurred.

This method was used on orthomosaics acquired over portions of the Mesa fire (a

16,000-hectare mixed severity fire located on the Payette National Forest in

southern Idaho) to calculate burn intensity. This fire worked well as there were

areas of active crown fire, passive crown fire, and surface fire. Figure [4] shows

the Southwest area of the Mesa fire which had a lot of Active Crown fire, while

Figure [5] the east section which had more passive crown fire and possible

surface fire (Hamilton, 2021).

Figure 4. (a) Hyperspatial data after a burn. (b) Types of fire: Red = Active, Yellow = Passive,

Black = inconclusive crown fire activity.

13

Figure 5. (a) Hyperspatial data after a burn. (b) Types of fire: Red = Active, Yellow =

Passive, Black = inconclusive crown fire activity.

4.2 Results of Tree Island Project

The output of the Tree Island project looks promising. The Hoodoo fire yielded

the best results because it did not contain shadows that confuse the SVM. It also had trees

that were clearly surrounded by burn pixels. It seemed that higher numbers for the

cleaner threshold yielded better results. Figures 6 and 7 show the steps through the

process from classification to the cleaner to removing tree islands. The threshold for the

cleaner was set to 3200 pixels.

 (a) (b)

Figure 6 - Part (a) is an orthomosaic of Hoodoo that was created using drone imagery. Part (b) is

the Hoodoo image classified into tree pixels (green), burn pixels (black), and surface pixels (grey)

14

 (a) (b)

Figure 7 - Part (a) is the classified Hoodoo orthomosaic after groups of surface pixels smaller

than 3200 are removed. Part (b) is after trees surrounded by burn are removed.

Validation data will be created the same way it was created to test the accuracy of the

MR-CNN to find out how much improvement there is in accuracy.

5. Conclusion

 Both these projects were ways to apply the skills I have learned to a real-world

problem. I used my experience in C++ to create programs useful for the project. My

experience in ArcGIS also was used for data preparation and presentation. I also learned

how to work with a team to accomplish a task. We used Machine Learning to create

highly automated methods that help land managers properly react to the damage done by

fires.

 Another thing learned through the research project was the work that needed to be

done to publish a paper. The most difficult part of it was the editing process. The paper

must be to the point where everyone involved including the editors is willing to put their

name on it. Lots of people have their reputations at stake when a paper is published.

15

5.1 Future Work

 There are many possibilities for future work to advance the research. Many of

them involve the MR-CNN. While the MR-CNN is highly accurate at identifying trees, it

can improve. One way it can be improved is at the edges of each tile. The MR-CNN has

to split up the image into manageable tiles, however, this causes errors to occur at the

edges. One way to fix this would be to create overlapping tiles and only save the inside

portion of the tiles. Another bug that needs to be fixed arises when there are too many

trees in a tile. This can be fixed by creating smaller tiles. The MR-CNN could be

retrained for the Tree Island Project with an emphasis on finding the whole tree.

 A paper is being written on the Tree Island Project by Dale and myself that will

be published to Remote sensing. This paper was requested for and is a special edition.

16

References

Hamilton, D. A., Brothers, K. L., Jones, S. D., Colwell, J., & Winters, J. (2021).

Wildland Fire Tree Mortality Mapping from Hyperspatial Imagery Using

Machine Learning. Remote Sensing, 13(2), 290. doi:10.3390/rs13020290

McCarthy, G., Moon, K., & Smith, L. (2017). Mapping fire severity and fire extent in

forest in Victoria for ecological and fuel outcomes. Ecological Management &

Restoration, 18(1), 54–65. https://doi.org/10.1111/emr.12242

Miquelajauregui, Y., Cumming, S. G., & Gauthier, S. (2016). Modelling Variable Fire

Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure. PLoS

ONE, 11(2), 1–24. https://doi.org/10.1371/journal.pone.0150073

Nazzaro, R. M. (2006). Wildland Fire Rehabilitation and Restoration: Forest Service and

BLM Could Benefit from Improved Information on Status of Needed Work:

GAO-06-670. GAO Reports, 1.

17

Appendix

Cleaner

The cleaner uses openCV to open the images and then stores that data in a Dynamically

allocated 2D array.

Input for the Cleaner is %InputImage% %OutputImage% %threshold%

%numberofImages%

Threshold is the max size of groups of pixels that will be changed to burn. The cleaner

uses a linked list to keep track of pixels. This class is located in TreePixelHT.h. It keeps

track of the location of each tree pixel in the group and is also used to iterate through

unchecked pixels.

Cleaner.cpp

#include <iostream>

#include <opencv2\gapi\plaidml\core.hpp>

#include <opencv2/imgcodecs.hpp>

#include <opencv2\highgui\highgui.hpp>

#include <opencv2\ml\ml.hpp>

#include <cstdio>

#include <ctime>

#include "opencv2\imgproc.hpp"

#include "opencv2\video\background_segm.hpp"

#include "opencv2\video\tracking.hpp"

#include <string>

#include <iomanip>

#include "TreePixelHT.h"

#include <fstream>

using namespace cv;

using namespace std;

const int grass = 0; //tree number

18

const int burn = 1; //burn number

int Checker(int** arr, int** check, int i, int m, TreePixelHT* uncheckedPix,

TreePixelHT* treeIs, int& checkNum)

{

 if (arr[i][m] == grass) //is it a grass pixel?

 {

 if (check[i][m] == 0) //has it been checked?

 {

 //cout << " " << i << " " << m << endl;

 check[i][m] = checkNum;

 //uncheckedPix->addNode(i, m); //add to list

 //if (size < thresh)

 treeIs->addNode(i, m);

 return 1;

 }

 else if (check[i][m] != checkNum)

 {

 return -4;

 }

 }

 return 0;

}

bool checkAround(int** arr, int** check, int i, int m, TreePixelHT* uncheckedPix,

TreePixelHT* treeIs, int& checkNum, int rows, int cols, int &size)

{

 //cout << i << " " << m << "\n ";

 int numToAdd = 0;

 bool island = true;

 if (i != 0)

 {

 numToAdd += Checker(arr, check, i - 1, m, uncheckedPix, treeIs, checkNum);

 }//check to the left

 if (m != 0)

 {

19

 numToAdd += Checker(arr, check, i, m - 1, uncheckedPix, treeIs,

checkNum); //check above

 }

 if (i != rows - 1)

 {

 numToAdd += Checker(arr, check, i + 1, m, uncheckedPix, treeIs,

checkNum); //check to the right

 }

 if (m != cols - 1)

 {

 numToAdd += Checker(arr, check, i, m + 1, uncheckedPix, treeIs,

checkNum); //check below

 }

 if (numToAdd < 0)

 {

 island = false;

 }

 else

 {

 size += numToAdd;

 }

 return island;

}

int TreeIsland(int** arr, int** check, int cols, int rows, int thresh)

{

 int size;

 int numOfIslands= 0;

 int tenCols, tenRows;

 bool island = true;

 bool helpingBool;

 int checkNum = 0;

 TreePixelHT* uncheckedPix = new TreePixelHT;

 TreePixelHT* treeIs = new TreePixelHT;

 tenCols = rows / 10;

 int diff = rows % 10;

20

 for (int i = 0; i < rows; i++) //i is rows

 {

 if ((i-diff) % tenCols == 0)

 {

 cout << setw(2) << 100 * (i -diff) / (double)(rows-diff) << "%

done | ";

 }

 for (int m = 0; m < cols; m++) //m is columns

 {

 size = 0;

 if (check[i][m] == 0)

 {

 check[i][m] = checkNum + 1;

 if (arr[i][m] == grass) //unchecked tree pixel. Check for

island

 {

 checkNum++;

 size++;

 island = checkAround(arr, check, i, m,

uncheckedPix, treeIs, checkNum, rows, cols, size);

 treeIs->addNode(i, m);

 TreePixel* place;

 place = treeIs->Head;

 while (place != nullptr && size < thresh*2)

 {

 int r = place->row;

 int c = place->column;

 helpingBool = checkAround(arr, check, r, c,

uncheckedPix, treeIs, checkNum, rows, cols, size);

 if (helpingBool == false)

 {

 island = false;

 }

 place = place->next;

 }

21

 if (size < thresh && island)

 {

 numOfIslands++;

 size = 0;

 while (treeIs->Tail != nullptr)

 {

 TreePixel* tester = treeIs->Tail;

 size++;

 int r = treeIs->Tail->row;

 int c = treeIs->Tail->column;

 treeIs->deleteTail();

 //remove end of list

 arr[r][c] = burn;

 }

 //cout << "size: " << size << endl;

 }

 else

 {

 while (treeIs->Tail != nullptr)

 {

 treeIs->deleteTail();

 //delete treeIs list

 }

 }

 }

 }

 }

 }

 cout << endl << numOfIslands << endl;

 return 1;

}

int main(int argc, char* argv[])

{

 int help;

 int thresh;

 Mat image;

22

 clock_t timer; //Keeps track of time

 double duration;

 string inputBaseName, inputWithNum, outputBaseName, outputWithNum;

 int numOfImages = 1;

 if (argc > 3)

 {

 inputBaseName = inputWithNum = argv[1];

 outputBaseName = outputWithNum = argv[2];

 thresh = stoi(argv[3]);

 if (argc > 4 && argv[4] != "1")

 {

 numOfImages = stoi(argv[4]);

 }

 }

 else

 {

 cout << "no command line.";

 return 1;

 }

 for (int j = 0; j < numOfImages; j++)

 {

 if (numOfImages != 1)

 {

 inputWithNum = "";

 outputWithNum = "";

 cout << "Using base name " << argv[1] << endl << "for " <<

numOfImages << " images\n";

 int inlength = inputBaseName.length();

 int outlength = outputBaseName.length();

 for (int k = 0; k < inlength; k++)

 {

 inputWithNum += inputBaseName[k];

 if (k == inlength - 5) //before .tif

 {

 inputWithNum += to_string(j);

 }

23

 }

 for (int k = 0; k < outlength; k++)

 {

 outputWithNum += outputBaseName[k];

 if (k == outlength - 5) //before .tif

 {

 outputWithNum += to_string(j);

 }

 }

 //cout << endl << inputWithNum;

 //cin >> inputWithNum;

 }

 cout << "Opening " << inputWithNum << endl;

 image = imread(inputWithNum, IMREAD_UNCHANGED); //open

image

 if (image.empty())

 //Check if image opened properly

 {

 cout << "\nCould not open " << inputWithNum;

 return 1;

 }

 int rows;

 int columns;

 rows = image.rows;

 columns = image.cols;

 timer = clock();

 //start timer

 cout << "\n\n" << rows << " rows and " << columns << " columns \n";

 int** arr;

 int** check;

 check = new int* [rows]; //dynamically allocate 2d array to

keep track of checked pixels

24

 arr = new int* [rows]; //dynamically allocate 2d array that

will hold tree pixels

 for (int m = 0; m < rows; m++)

 {

 check[m] = new int[columns];

 arr[m] = new int[columns];

 }

 for (int i = 0; i < rows; i++)

 {

 for (int m = 0; m < columns; m++)

 {

 check[i][m] = 0;

 //set checks to 0

 arr[i][m] = (int)image.at<ushort>(i, m); //input

mat into an array

 }

 }

 TreeIsland(arr, check, columns, rows, thresh);

 //check for tree islands

 duration = ((double)clock() - (double)timer) /

(double)CLOCKS_PER_SEC; //end timer

 cout << endl << duration << "s to find all grass pixels < " << thresh <<

"\n\nSaving image to " << outputWithNum << "\n\n"; //output time

 for (int i = 0; i < rows; i++)

 {

 for (int m = 0; m < columns; m++)

 {

 image.at<ushort>(i, m) = (ushort)arr[i][m];

 //input array into the mat

 }

 }

 for (int i = 0; i < rows; i++) //delete tables

25

 {

 delete[] check[i];

 delete[] arr[i];

 }

 delete[] check;

 delete[] arr;

 imwrite(outputWithNum, image); //save image

 }

}

TreeIsland Program

TreeIsland.cpp

#include <iostream>

#include <opencv2\gapi\plaidml\core.hpp>

#include <opencv2/imgcodecs.hpp>

#include <opencv2\highgui\highgui.hpp>

#include <opencv2\ml\ml.hpp>

#include <cstdio>

#include <ctime>

#include "opencv2\imgproc.hpp"

#include "opencv2\video\background_segm.hpp"

#include "opencv2\video\tracking.hpp"

#include <string>

#include "TreePixelHT.h"

26

#include <fstream>

using namespace cv;

using namespace std;

const int tree = 4; //tree number

const int burn = 1; //burn number

bool Checker(int** arr, int** check, int i, int m, TreePixelHT* uncheckedPix,

TreePixelHT* treeIs, int &checkNum)

{

 if (arr[i][m] == tree) //is it a tree pixel?

 {

 if (check[i][m] == 0) //has it been checked?

 {

 //cout << " " << i << " " << m << endl;

 check[i][m] = checkNum;

 uncheckedPix->addNode(i, m); //add to list

 treeIs->addNode(i, m);

 return true; //still could be a tree

27

 }

 else if (check[i][m] != checkNum) //already checked and not a tree

island

 {

 //cout << 1;

 return false; //not a tree Island

 }

 else //already checked

 {

 //cout << 2;

 return true;

 }

 }

 else if (arr[i][m] == burn) // surrounded by a non burn or tree pixel

 {

 //cout << 3;

 return true;

 }

 else

 {

 //cout << 4;

 return false;

28

 }

}

bool checkAround(int** arr, int** check, int i, int m, TreePixelHT* uncheckedPix,

TreePixelHT* treeIs, int &checkNum)

{

 //cout << i << " " << m << "\n ";

 bool island = true;

 island = Checker(arr, check, i - 1, m, uncheckedPix, treeIs, checkNum);

 //check to the left

 if (island)

 {

 //Check above

 island = Checker(arr, check, i, m - 1, uncheckedPix, treeIs, checkNum);

 //check above

 if (island)

 {

 //Check Right

 island = Checker(arr, check, i + 1, m, uncheckedPix, treeIs,

checkNum); //check to the right

 if (island)

 {

 //Check Below

29

 island = Checker(arr, check, i, m + 1, uncheckedPix, treeIs,

checkNum); //check below

 }

 }

 }

 return island;

}

int TreeIsland(int** arr, int** check, int cols, int rows)

{

 int size;

 bool island = true;

 int checkNum = 0;

 TreePixelHT* uncheckedPix = new TreePixelHT;

 TreePixelHT* treeIs = new TreePixelHT;

 for (int i = 0; i < rows; i++) //i is rows

 {

 //cout << endl << i << endl;

 for (int m = 0; m < cols; m++) //m is columns

 {

 island = true;

30

 if (check[i][m] == 0)

 {

 check[i][m] = checkNum + 1;

 if (arr[i][m] == tree) //unchecked tree pixel. Check for

island

 {

 if (i != 0 && i != rows - 1 && m != 0 && m != cols

- 1) //not an edge pixel

 {

 checkNum++;

 island = checkAround(arr, check, i, m,

uncheckedPix, treeIs, checkNum);

 treeIs->addNode(i, m);

 }

 else

 {

 island = false;

 }

 TreePixel *place;

 place = uncheckedPix->Head;

 while (place != nullptr && island)

31

 {

 //cout << endl << endl;

 int r = place->row;

 int c = place->column;

 if (r != 0 && r != rows - 1 && c != 0 && c

!= cols - 1) //not an edge pixel

 {

 island = checkAround(arr, check, r,

c, uncheckedPix, treeIs, checkNum);

 place = place->next;

 }

 else

 {

 island = false;

 }

 }

 if (island)

 {

 cout << "island found ";

 size = 0;

 while (treeIs->Tail != nullptr)

 {

32

 TreePixel *tester = treeIs->Tail;

 //cout << endl << endl;

 size++;

 int r = treeIs->Tail->row;

 int c = treeIs->Tail->column;

 treeIs->deleteTail();

 //remove end of list

 arr[r][c] = burn;

 //Tree is burnt

 }

 cout << "size: " << size << endl;

 }

 else

 {

 while (uncheckedPix->Tail != nullptr)

 //clean up

 {

 uncheckedPix->deleteTail();

 //delete uncheckedPix list

 }

 while (treeIs->Tail != nullptr)

 {

33

 treeIs->deleteTail();

 //delete treeIs list

 }

 }

 }

 }

 }

 }

 return 1;

}

int main(int argc, char* argv[])

{

 int help;

 Mat image;

 string inputBaseName;

 string outputBaseName;

 string inputWithNum;

 string outputWithNum;

 int numOfImages;

 clock_t timer; //Keeps track of time

34

 double duration;

 if (argc > 2)

 {

 inputBaseName = inputWithNum = argv[1];

 outputBaseName = outputWithNum = argv[2];

 if (argc > 3 && argv[3] != "1")

 {

 cout << argv[3] << endl << endl;

 numOfImages = stoi(argv[3]);

 }

 else

 {

 numOfImages = 1;

 }

 }

 else

 {

 cout << "no command line.";

 return 1;

 }

35

 for (int j = 0; j < numOfImages; j++)

 {

 if (numOfImages != 1)

 {

 inputWithNum = "";

 outputWithNum = "";

 cout << "Using base name " << argv[1] << endl << "for " <<

numOfImages << " images\n";

 int inlength = inputBaseName.length();

 int outlength = outputBaseName.length();

 for (int k = 0; k < inlength; k++)

 {

 inputWithNum += inputBaseName[k];

 if (k == inlength - 5) //before .tif

 {

 inputWithNum += to_string(j);

 }

 }

 for (int k = 0; k < outlength; k++)

36

 {

 outputWithNum += outputBaseName[k];

 if (k == outlength - 5) //before .tif

 {

 outputWithNum += to_string(j);

 }

 }

 //cout << endl << inputWithNum;

 //cin >> inputWithNum;

 }

 cout << "Opening " << inputWithNum << endl;

 image = imread(inputWithNum, IMREAD_UNCHANGED); //open

image

 if (image.empty())

 //Check if image opened properly

 {

 cout << "\nCould not open " << inputWithNum;

 return 1;

37

 }

 int rows;

 int columns;

 rows = image.rows;

 columns = image.cols;

 cout << "\n\n" << rows << " rows and " << columns << " columns \n";

 int** arr;

 int** check;

 check = new int* [rows]; //dynamically allocate 2d array to

keep track of checked pixels

 arr = new int* [rows]; //dynamically allocate 2d array that

will hold tree pixels

 for (int m = 0; m < rows; m++)

 {

 check[m] = new int[columns];

 arr[m] = new int[columns];

 }

 for (int i = 0; i < rows; i++)

38

 {

 for (int m = 0; m < columns; m++)

 {

 check[i][m] = 0;

 //set checks to 0

 arr[i][m] = (int)image.at<ushort>(i, m); //input

mat into an array

 }

 }

 timer = clock();

 //start timer

 TreeIsland(arr, check, columns, rows); //check

for tree islands

 duration = ((double)clock() - (double)timer) /

(double)CLOCKS_PER_SEC; //end timer

 cout << endl << duration << "s to find all islands\n\nSaving image " <<

outputWithNum << "\n\n"; //output time

 for (int i = 0; i < rows; i++)

 {

39

 for (int m = 0; m < columns; m++)

 {

 image.at<ushort>(i, m) = (ushort)arr[i][m];

 //input array into the mat

 }

 }

 imwrite(outputWithNum, image); //save image

 for (int i = 0; i < rows; i++) //delete tables

 {

 delete[] check[i];

 delete[] arr[i];

 }

 delete[] check;

 delete[] arr;

 }

}

TreePixelHT.h

#pragma once

#include "TreePixel.h"

40

class TreePixelHT

{

public:

 TreePixel* Head;

 TreePixel* Tail;

 TreePixelHT()

 {

 Head = Tail = nullptr;

 }

 void addNode(int, int);

 void deleteTail();

};

TreePixelHT.cpp

#include "TreePixelHT.h"

#include <iostream>

using namespace std;

void TreePixelHT::addNode(int first, int second)

{

41

 TreePixel* ptr;

 ptr = new TreePixel; //making new node

 ptr->row = first; //adding data

 ptr->column = second;

 if (this->Head == nullptr) //empty list

 {

 this->Head = this->Tail = ptr; //set head and tail

 return;

 }

 else

 {

 TreePixel* help;

 ptr->prev = help = this->Tail; //add node to the beginning

 help->next = this->Tail = ptr;

 }

}

void TreePixelHT::deleteTail() //remove node from the tail

42

{

 TreePixel* ptr = this->Tail;

 if (ptr->prev == nullptr)

 {

 delete ptr;

 this->Tail = this->Head = nullptr;

 return; //empty list

 }

 else

 {

 this->Tail = ptr->prev;

 delete ptr;

 return; //still items in list

 }

}

TreePixel.h

#pragma once

class TreePixel

{

public:

43

 TreePixel* next;

 TreePixel* prev;

 int column;

 int row;

 TreePixel ()

 {

 next = prev = nullptr;

 row = column = -1;

 }

};

KamdenFinalSeniorThesis
Final Audit Report 2021-05-04

Created: 2021-04-29

By: Kamden Brothers (kbrothers@nnu.edu)

Status: Signed

Transaction ID: CBJCHBCAABAA4EwQZ-lpj_-_YD90mcOSGTH-asSv6vwQ

"KamdenFinalSeniorThesis" History
Document created by Kamden Brothers (kbrothers@nnu.edu)
2021-04-29 - 11:03:36 PM GMT- IP address: 198.60.209.202

Document emailed to David C Hille (dhille@nnu.edu) for signature
2021-04-29 - 11:06:44 PM GMT

Email viewed by David C Hille (dhille@nnu.edu)
2021-04-30 - 1:47:55 AM GMT- IP address: 66.249.84.95

Document e-signed by David C Hille (dhille@nnu.edu)
Signature Date: 2021-04-30 - 10:00:51 PM GMT - Time Source: server- IP address: 198.60.209.90

Document emailed to Dale Hamilton (dhamilton@nnu.edu) for signature
2021-04-30 - 10:00:55 PM GMT

Email viewed by Dale Hamilton (dhamilton@nnu.edu)
2021-05-02 - 4:27:43 AM GMT- IP address: 66.249.84.91

Email viewed by Dale Hamilton (dhamilton@nnu.edu)
2021-05-04 - 2:49:08 AM GMT- IP address: 66.249.84.217

Document e-signed by Dale Hamilton (dhamilton@nnu.edu)
Signature Date: 2021-05-04 - 2:55:16 AM GMT - Time Source: server- IP address: 67.60.216.39

Document emailed to Barry L Myers (blmyers@nnu.edu) for signature
2021-05-04 - 2:55:19 AM GMT

Email viewed by Barry L Myers (blmyers@nnu.edu)
2021-05-04 - 3:12:39 PM GMT- IP address: 66.249.84.205

Document e-signed by Barry L Myers (blmyers@nnu.edu)
Signature Date: 2021-05-04 - 3:13:29 PM GMT - Time Source: server- IP address: 174.27.93.244

Agreement completed.
2021-05-04 - 3:13:29 PM GMT

		2021-05-04T08:13:32-0700
	Agreement certified by Adobe Sign

